(nspiriSYS

Solutions Limited

An Overview of the HTTP
Protocol as covered in RFCs

(inspiriSYs
'nspslﬂﬁolm et An Overview of the HTTP Protocol as covered in RFCs

Formerly Accel Frontline Limited

Contents
1. INtroduction @nd HiStOrYcooiiiiiiiiiiiii et e e s sra e e e esabae e e ssnbseeesnnsreeeean 3
2. HTTP VEISIONS ...ttt ettt s et e sttt e e st e e s s et e e s an et e e s e anreeesaanreeesanneeesannneeeseanrenes 3
3. HTTP Protocol REQUESE/RESPONSEcccueeiiieiiiiitiieii et eiteesteesteesteeteebeebe e beestaessbessseesseeseassessssesasenns 3
Q. HTTP/L.0 QN0 QATIIEE ..ot ettt ettt e e e et e e e eeaete s s esateeesesreeessasatessasreeessesaeesssaraeas 4
B HTTP KEEP-AIIVE ...ttt e et e e e ae e e e et a e e s e abaeeeeaabeeesansbeeesannbaeesannsaeesenrenas 4
6. HTTP PIPEIINING ... it e et e e e sttt e e s s bt e e e e s abeeessasbeeeessbeeeesnsbeaessnnrenns 4
2 & 1 1 1 T T T T O T OO T PR PP 5
8. HTTP INtermediaries: PrOXYocciiiiiiiiie ettt et e e e ette e e e e tee e e e eataee e eenbaee s eenteeesesaneeeesnnrenas 5
9. HTTP Intermediaries: TUNNEIc..ooiiiiiiiiie ettt st sttt e e esaee e 6
10, HTTP IMEEROMS ...ttt b e bt s ht e sat e et e et e e bt e s bt e saeesatesateebeebeenes 6
11. HTTP/1.1 Request Header EXAMPIESccoeevieiiiiiieieecieeteeste ettt ereereesteeste e s e e staesabesabeebeenbeeens 6
12. HTTP/1.1 Response Header EXamples............cccocveiiiiiieiieiieecieesee ettt este et teestae s veebeebeebe e 6
13, COOKIES.....c.ueeitieiee ettt ettt sttt b e bt h et ea et e bt et e e bt e e bt e sae e st e e be e beebeenes 7
13,1 TYPES OF COOKIES ...ttt e et e e et e e e e e tte e e e ebteeesebaeeeessteeeesstaeassasranaeannes 7
14, AUTRENTICAtION......cooiiiiiiie ettt e st e s ab e e st e e s bee e s bt e sbbeesabeesbeeesareens 8
B U =T Y- L= o | N 9
16. CoNENt NEBOLIAtION........ooiiiiiiiii e e e s e e e e e e e e s sesabberaeeeessssnsssneneeeeas 9
17. TranSfer ENCOCINGoooi ittt e et e e ettt e e e e eata e e e sabae e e e asaeeeensaeeeeasbaseesnsseeeennsanaanan 9
17.1 Chunked Transfer ENCOCINGcccuiiiiiiiiiecie ettt e et e e et e e e et ae e e e aaeeeeas 10
18. IMIME ENCOMING........ooiiiiiiie ittt ettt e e et e e et e e e et e e e e s bt e e e e s asbaeeesastaeeeansbaeeesnssaesessseaesansenas 10
18.1 What is it USEd fOr? (IMIIVIE)ooiiiiiiiieiireee et eeteeeeeeteeeeeetrreeeeetaaeeeetaaeeeensaeseennsreeesnnnneeeens 10
18.2 IMIIIMIE FOPMAT.......ooiiiiiiieiie ettt e e st e e s e e e s anra e e e s anrne e e sanneeenas 10
18.3 HOW iS it US@A? (IMIIMIE)oooineiiiiieeeee ettt ettt e et e e ettt e e e et e e e eaaa e e e ensaeeeensseeeeenneeeanan 11
18.4 Support for different languages (IMIIMIE)ooooiiiiieiiiiic et e 11
18.5 ENCOAING (IMIIVIE)oneiiieieiectee ettt ettt et e e tte e st e et e e s ba e e s taeesateeebaeesabaeessseesnsaeesaeesaseeenns 11
18.6 Base 64 encoding EXample (IMIIVIE)cccooooiiiiiieiiieeee ettt e e e e s reeeeaaeesbee e 11
18.7 Sending large Messages (IMIIIVIE)................c..oooiiiieeeciiiee et e e ettt e et e e eeaee e e e aae e e eeabaee e e anaeeaean 12
R o S - Tl o 11 - RS 12
19.1 Preventing CaCRiNg..........ooo ot e e e e e e e s et e e e e e e e e e e nrabaeeeeeeeeennnrnes 12
B T A LTy T - ot Tl o 11 - SR 12
19.3 Cache Validation and the 304 reSPONSEc..ooeiviiiieiiiiiie e e e e e e saaeee e 13
20. SPDY ...ttt h bt h ettt e te e be e bt e eh e e ea et e bt e bt e bt e eheeeaeeea et e bt e bt e eheesateeabeebeeabeenes 13
21, WAt IS HTTP/2? oot ee et eeeee et e e s e e e eeee et e seeeeeseeeeseeeeseseeeeesaseseseseeseseneseseseneaenas 13
211 HTTP/2 SPECIHICAtION ...ttt ettt ettt et ettt e te e teesteeeaeeeaseenbeeeteesaeesanesaneens 13
21.2 HTTP/2 OVEF TLS (N2) ..ottt sttt ettt eae b e nas 14
EXPERIENCE
POSSIBILITIES » [rens srom company

] L] L]
An Overview of the HTTP Protocol as covered in RFCs @Spﬁl!’_ ISLY§

Formerly Accel Frontline Limited

21.3 HTTP/2 OVEF TCP (N2C)oicuiiiiieiietiectee ettt ettt ettt e st e st e e te e te e beesbaesabeeabeenteetaestaesanesanenns 14
21.4 TCP Connections - HTTP 1.1 vVersus HTTP/2..........oooiiiiiii ettt ettt 14
21.5 HTTP/2.0 Prioritize€d REOUESTSccviiueieiierieieecteectee et cteeete e e eeteeeteesteeeaeseveeseenteesseesssesaneens 14
21.6 HTTP/2.0 CoMPressed HEAUEKScvievierierieeteecteecte et ettt eete et e steeeaeeeveebeeeteesteesaeesane e 14
217 HTTP/2.0 PUSK ...ttt ettt et et st e st e st e et e et e e baesbaesabeeabeentaestaestaasanesanenns 14
218 HTTP/2 MUILIPIEXING ...ttt et ettt e st e e be e be e be e s ba e sabesabeenbeastaestaesanesaneans 15
22. How to TroublesShoot - DEV TOOISccceiiiiiiiiiieieenierie ettt ettt s 15
23. How to Troubleshoot — Wireshark..............c..ccooueiiiiiiiiiiiiieeee e 16
24. REST (Representational State Transfer)............coooiiiiiiiir e e e 18
25, REST HTTP VEIDS......oooiiiiiie ettt ettt ettt e e et e e st e e et e e e s eabe e e e ssabeeeeesnbeeeeensseeeeennseeesensenas 18
3700 R C] S PN 19
25,2 POST ...ttt ettt ettt b e bbbt ettt e be e e bt e eh e e sat e ea bt et e et e e b e e bt e ebe e eaeeeat e et e e beenbeesheesanena 19
25,3 PUT ettt b e s h et s h e ettt bt bt e b e e s Rt e eat e et e e b e e b e e bt e aheeeheeeate et e e beenheesheesanena 19
25 4 DELETE...... ..ttt ettt e e e e ettt et e e e e e ettt e e e e e e e e e ber et e e e e e e e e nbebeeeee e e e e annreeeeeeeeeaanan 20
26. WEDSOCKELconeiiiiiiee ettt ettt et e st e st e s bt e e bbe e e be e e hbe e s abeesbeeesbeeenne 20
27. Protocol handshake.................cooiiiiiiiiiie ettt e sttt e sttt essaee e sbeeenee 20
28. HTTP LONG POIIING ...ttt e e et e e e et e e e e et e e e e e abe e e e eantaeaeennbaeeeennseeeeenranas 21
29, WED DAV ...ttt ettt h e s at e st e e bt et e e e bt e eh e e sat e e ab e e bt e b e e ehe e ehe e eh et e bt e beeeheeeheeeabe e beeabeenes 21
30. JWT (JSON Web TOKEN) =SSOccueeiiiiriieienieeiente ettt ette sttt ettt st et sbe et e sbesbeebesbeeseenbesaeentesbeeanes 22
31, JWT (JSON WED TOKEN) ..ottt sttt sttt st sb et sbesbe et sbe et e bt saeentesbeeanes 22
EXPERIENCE
POSSIBILITIES L

(in

[]
SPS!E!SLX% An Overview of the HTTP Protocol as covered in RFCs

Formerly Accel Frontline Limited

1. Introduction and History

Request for Comments (RFC) denotes a type of publication from the Internet Engineering Task Force (IETF)
and Internet Society (ISOC). IETF and ISOC are the technical development and standard-setting bodies for
the Internet and official documents of Internet specifications, communications protocols, procedures, and
events. RFC covers the memorandum, behaviors, research, and innovations associated with the operations
of the Internet and systems connected to the internet. RFC is submitted for peer review to convey new
concepts and information. Steve Crocker created RFC documents in 1969 to record informal notes about
the development of ARPANET (Advanced Research Projects Agency Network).

2.HTTP Versions

Following lists specify Application protocol for distributed hypermedia
> First documented in 1991 (HTTP/0.9)
» HTTP/1.0 introduced in 1996 (RFC 1945)
» HTTP/1.1 updated in 1999 (RFC 2616)

» HTTP/2.0 updated in 2015 (RFC 7540)

3. HTTP Protocol Request/Response

Hyper Text Transfer (HTTP) Protocol Request/Response includes Client and server exchange
request/response messages, which uses the TCP protocol. For Client and server exchange
request/response, the typical port number is 80.

client server

request

response

www.google.co.in - F12 Developer Tools - Microsoft Edge

DOM Explorer Console Debugger o Performance
— | @ T %)‘(@- = Y - Content type Find (Ctri+F)
Headers Body Parameters Cookies Timings
Name Protocol Method Result = Z = = 3
Request U ww.google.coin/?gfe_rd=cr8dc...
http://www.google.com/ HTTP GET 3022
Fout Request
7LinkiD=798232 : HTTPS GET 302 Statiié Code:_ M 200
https://go.microsoft.com/fwiini Mo 4 Requesl Headers
7LinklD=798232 HTTPS GET 302 Accept: text/html, application/xhtml+xml, image/jxr, */*
https://go.microsoft.com/fwiink Mo
Accept-Encoc Z

7cfe rd= cr&dcr 08tei=iSmeWoG5JdHD8wf6 Kmo... HTTP GET 302

http://www.google.co.n Four Accept-lan en-US
?afe rd=cr8tdcr=08tei=iSmeWoG5JdHD8wf6 Kmo... HTTP/2 GET 200
https//www.googie.co.in/
ic wahlbero product core 48, pnq8 ona HTTP/2 GET 200
httpsy//www.google.co.infimages/hpp.
aabnel -qarcia-marquezs-91st-birthday- 504602619... HTTP/2 GET 200
httpsy//www.googie.co.inflogos/doodies/20
aabriel-aarcia-marauezs-91st-birthdav-504602619... HTTP/2 GET 200
EXPERIENCE
pOSSIBILITIES a EHE holdings group company

] L] L]
An Overview of the HTTP Protocol as covered in RFCs @lSpﬁl[’_ ISLY§

Formerly Accel Frontline Limited

4.HTTP/1.0 and earlier

Before HTTP/1.1, each HTTP request used a separate TCP connection as shown in the figure below.

GET

TCP open \
TCP close 200 0K

TCP open ~E__)

TCP close 200 0K

GET
TCP open

.
200 OK

TCP close

5.HTTP Keep-Alive

HTTP/1.1 introduced the keyword “Keep-Alive.” TCP connections reused for multiple HTTP requests. HTTP
uses the keyword “Keep-Alive” in the “Connection” header to denote that the connection is open for
additional messages. “Keep-Alive” exists default in HTTP/1.1 while in HTTP/1.0, the default is to use a new
connection for each request or reply pair.

GET
TCP open \)
200 OK

GET

\)
(,m

GET

TCP close 200 OK

6. HTTP Pipelining
HTTP/1.1 pipelining is a technique in which multiple HTTP requests sent on a single TCP connection without
waiting for the corresponding responses.

EXPERIENCE CALe
POSSIBILITIES a [l hoteings sroup company

(inspiriSYS
'nspsl{,gol” et An Overview of the HTTP Protocol as covered in RFCs

Formerly Accel Frontline Limited

no pipelining pipelining
client server client server

open —4— open =

e
/

close —

-« 3um

close _.!/E
r

7.HTTP

Hyper Text Transfer Protocol, a direct connection between client and server. It serves as intermediaries in
the request/response chain that include the following elements:

> Proxy
> Gateway
» Tunnel

8. HTTP Intermediaries: Proxy

client proxy server
= =
http n E http MIE

> |

1. receives request
2. rewrites message
3. forwards to server

GET http://cryptome.org/HTTP/1.1

Host: cryptome.org

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en; rv:1.9.0.3) Gecko/20080528 Epiphany/2.22 Firefox/3.0
Accept: text/html, application/xhtml+xml, application/xml, g=0.9, */*, q=0.8
Accept-Encoding: gzip, deflate

Accept-Charset: ISO-8859-1, utf-8, q=0.7, *; q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

If-Modified-Since: Tue, 14 Oct 2008 13:59:19 GMT

If-None-Match: “e01922-62e9-45937059ec2de”

Cache-Control: max-age=0

EXPERIENCE
POSSIBILITIES

a EHE holdings group company

http://cryptome.org/HTTP/1.1

Solutions Limited

] L] L]
n An Overview of the HTTP Protocol as covered in RFCs @lSpll’ ISYS

Formerly Accel Frontline Limited

9. HTTP Intermediaries: Tunnel

HTTP tunneling is the process in which communications encapsulated by using the HTTP protocol. An HTTP
tunnel often used for network locations restricted connectivity or are behind firewalls or proxy servers. It
includes end-to-end encryption and SSL port 8100.

client tunnel server
= =

SSL IE SsL IE

L = - =

relays between connections
without changing message

10.HTTP Methods

GET - retrieves whatever information identified by the Request-URL

POST - sends data to the server for updates.

PUT - requests that the enclosed entity stored under the supplied Request-URL.

DELETE - requests the origin server to delete the resource identified by the Request-URL.

HEAD - Similar to the GET method, except that the server must not return a message-body in the
response.

TRACE - Allows the client to see what received at the other end of the request chain and use that
data for testing

YV VVYVYVY

A\

11.HTTP/1.1 Request Header Examples

Accept: specify desired media type of response
Accept-Language: specify the desired language of response
Date: date/time at which the message originated

Host: host and port number of requested resource

If-Match: conditional request

Referrer: URL of the previously visited resource

User-Agent: identifier string for a Web browser or user agent

YVVVVYYVY

12.HTTP/1.1 Response Header Examples

Allow: lists methods supported by request URI
Content-Language: the language of representation

Content-Type: media type of representation

Content-Length: length in bytes of representation

Date: date/time at which the message originated

Expires: date/time after which response is considered stale

ETag: an identifier for a version of the resource (message digest)
Last-Modified: date/time at which representation was last change

YVVVVYVYVVVY

EXPERIENCE CALe
POSSIBILITIES a oldings group company

(inspiriSYS
'nspsl{,#:olm et An Overview of the HTTP Protocol as covered in RFCs

Formerly Accel Frontline Limited

13.Cookies

A cookie is a text file stored on the hard drive (more precisely in the browser folder) when visiting a website.

13.1 Types of Cookies

> Session: They expire when the browser is closed or remained idle. For example, they are used in e-
commerce websites to continue browsing without losing chosen items in the cart.

> Permanent: They persist even after the browser exits. They have an expiration date though, as per
law that limits lasting more than six months. They assist in remembering passwords and login
information to reduce the need of re-entering them every time.

> Third party: Cookies attributes usually correspond to the website domain they are on and not for
third-party cookies. Third-Party websites such as advertisers install these cookies. Third-party
cookies collect data about browsing habits and track them across different websites. Websites such
as Facebook, Flickr, Google Analytics, Google Maps, Google Plus, Sound Cloud, Tumblr, Twitter, and
YouTube use third-party cookies.

The Set-Cookie HTTP response header sends cookies from the server to the user agent. This header from
the server tells the client to store a cookie.

Set-Cookie: <cookie-name>=<cookie-value>

This header from the server tells the client to store a cookie.

HTTP/1.0 200 OK

Content-type: text/html
Set-Cookie: yummy_cookie=newcookie
Set-Cookie: tasty_cookie=session

Now, with every new request to the server, the browser will send back all previously stored cookies to the
server using the Cookie header.

GET /sample_page.html HTTP/1.1
Host: www.example.org
Cookie: yummy cookie=newcookie; tasty cookie=session

4 Request Headers

Accept: text/html, application/xhtml+xml, image/jxr, */*

Cookie: NID=124=]jnv80o6CQCtAFZZ4XITQeDwddgh9i7B0-1x39srgCUc...

Host: wn

v.google.co.in
User-Agent: Mozilla/5.0 (Windows NT 10.0; Winb64; x64) AppleWebKit/...
4 Response Headers

=2592000; quic=51303431; quic=51303339; quic...

alt-svc: hg=":443"; ma

cache-control: private, max

content-type: text/html;
ate: Tue, 06 Mar 20180

expires: -1

p3p: CP="This is not a P3P policy! See g.co/p3phelp for more info."

Server. gws

-05; expires=Thu, 05-Apr-2018 05:39:2...

KU2HgEDrhHIfy1r6SEf25-0R82YRdhesd...

set-cookie: 1P_JAR=2018-03-0

set-cookie: NID=125=CRoaCa

strict-transport-security: max-age=3600

x-frame-options: S
x-xss-protection: 1; mode=bldck
) s taken (DOMContentlLoaded: 5.06 s, load: 8.97 s)

EXPERIENCE
POSSIBILITIES s LD vostngs roup cmpar

SpiriSYS

Solutions Limited

n An Overview of the HTTP Protocol as covered in RFCs

14. Authentication

HTTP supports the use of several authentication mechanisms to control access to pages and other
resources. These mechanisms are all based around the use of the 401-status code and the WWW-
Authenticate response header.

Formerly Accel Frontline Limited

The most widely used HTTP authentication mechanisms are as follows:

> Basic: The client sends the user name and password as unencrypted base64 encoded text. It should
only be used with HTTPS, as the password can be easily captured and reused over HTTP.

> Digest: The client sends a hashed form of the password to the server. Though the password cannot
catch over HTTP, it may be possible to replay requests using the hashed password.

» NTLM: This uses a secure challenge/response mechanism that prevents password capture or replay
attacks over HTTP. However, the authentication is per connection and will only work with HTTP/1.1
persistent connections. For this reason, it may not work through all HTTP proxies and can introduce
large numbers of network roundtrips if connections regularly closed by the web server.

* Force Authentication

If an HTTP receives an anonymous request for a protected resource it can force the use of Basic
authentication by rejecting the request with a 401 (Access Denied) status code and setting the WWW-
Authenticate response header as shown below:

HTTP/1.1 401 Access Denied

WWW - Authenticate: Basic realm= “My Server”
Content-Length: ©

The word Basic in the WWW-Authenticate selects the authentication mechanism that the HTTP client must
use to access the resource. The realm string can be set to any value to identify the secure area and may be
used by HTTP clients to manage passwords.

Most web browsers will display a login dialog when this response is received, allowing the user to enter a
Username and Password. This information is then used to retry the request with an Authorization request
header:

GET /securefiles/ HTTP/1.1
Host: www.httpwatch.com
Authorization: Basic aHR@cHdhdGNoCmY=

Authentication required

fost W https://www.httpwatch.com pels
nter q itore
wthoi
Username “
GET | Password
Host!
Auth¢

Cancel

he Au-.vrvr'&wt'v'l DT T DT TS TG T TE T T S ST T T P T TS ST i e T ey \vr' thlS (

sername and password. Although, the string aHROcHdhdGNoOm\

hnrAlZ A ancAadad viavrian AfF Awrarnamas s cnarmamavAs b thic Avams

EXPERIENCE CALe
POSSIBILITIES a oldings group company

(inspiriSYs
'nspslnﬁolm et An Overview of the HTTP Protocol as covered in RFCs n

Formerly Accel Frontline Limited

15.User Agent

In computing, a user agent is a software (a software agent) that is acting on behalf of a user. One common
use of the term refers to a web browser telling website information about the browser and operating
system. This allows the website to customize content for the capabilities of a particular device, but also
raises privacy issues. In HTTP, the User-Agent string often used for content negotiation, where the origin
server selects suitable content or operating parameters for the response.

16.Content Negotiation

Content negotiation refers to mechanisms defined as a part of HTTP that make it possible to serve different
versions of a document at the same URL, so that user agents can specify which version fits their capabilities
the best.

HTTP provides for several different content negotiation mechanisms including:

> Server-driven
> Agent-driven
> Transparent
> hybrid

Client Browser Request:

Accept-Language: de; gq=1.0, en; g=0.5
Accept: text/html; q=1.0, text/*; q=0.8, image/gif; q=0.6, image/jpeg; q=0.6, image/*; q=0.5, */*; q=0.1

Server-driven or proactive content negotiation is performed by algorithms on the server, which choose
among the possible variant representations. This is commonly performed based on a user-agent provided
acceptance criteria. To summarize how this works, when a user agent submits a request to a server, the
user agent informs the server what media types it understands with ratings of how well it understands
them. More precisely, the user agent provides an Accept HTTP header that lists acceptable media types
and associated quality factors. The server is then able to supply the version of the resource that best fits
the user agent's needs

Example Negotiation Headers

> Accept: Which media types are acceptable for the response, such as “application/json,”
“application/xml” or a custom media type such as “application/vnd.example+xml.”

> Accept-Charset: Which character sets are acceptable, such as UTF-8 or ISO 8859-1.

» Accept-Encoding: Which content encodings are acceptable, such as gzip.

> Accept-Language: The preferred natural language, such as "en-us."

17.Transfer Encoding

The Transfer-Encoding header specifies the form of encoding used to transfer the entity to the user.
Transfer-Encoding is a hop-by-hop header applicable to a message between two nodes, not to a resource
itself. Each segment of a multi-node connection can use different Transfer-Encoding values. If you want to
compress data over the whole connection, use the end-to-end header Content-Encoding header instead.

Transfer-Encoding: chunked
Transfer-Encoding: compress
Transfer-Encoding: deflate
Transfer-Encoding: gzip
Transfer-Encoding: identity

// Several Values can be listed, separated by a comma
Transfer-Encoding: gzip, chunked

EXPERIENCE
POSSIBILITIES

a EHE holdings group company

[] [] []
An Overview of the HTTP Protocol as covered in RFCs Glspsl['_ ISLYS

Formerly Accel Frontline Limited

17.1 Chunked Transfer Encoding

Chunked transfer encoding is a streaming data transfer mechanism available in version 1.1 of the Hypertext
Transfer Protocol (HTTP). In chunked transfer encoding, the data stream divided into a series of non-
overlapping "chunks." The chunks are sent out and received independently of one another. No knowledge
of the data stream outside the processing chunk is necessary for both the sender and the receiver at any

given time.

The size in bytes precedes each chunk. The transmission ends when a zero-length chunk received. The
chunked keyword in the Transfer-Encoding header indicates a chunked transfer. This encoding is beneficial
if knowledge on the response size is unclear and data size is large.

Encoded data

HTTP/1.1 200 OK
Content-Type: text/plain
Transfer-Encoding: chunked

7\r\n
Mozilla\r\n
9\r\n
Developer\r\n
7\r\n
Network\r\n
o\r\n

\r\n

18. MIME Encoding

HTTP is largely a text-based protocol. Binary content needs some way of transmission. MIME is an acronym
for Multipurpose Internet Mail Extension. It is used to describe message content types. MIME messages
can contain the text, images, audio, video and other application-specific data (For examples: PDF files,
Microsoft Word Documents, and so on).

18.1 What is it used for? (MIME)

It assists to make internet messages richer. It allows applications (and users) to exchange rich content other
than text. It is an extension to the original email specification (RFC-822). RFC documents such as RFC-2045
through RFC-2049 defines about MIME. A Request for Comments (RFC) is a document published by the
Internet Engineering Task Force (IETF) describing an internet standard.

18.2 MIME Format
MIME types are defined using a <type>/<subtype> [optional parameters] format. Some typical examples
are as follows:

text/plain txt
application/vnd.ms-excel xls
application/pdf pdf
text/html htm; html
text/css css
EXPERIENCE auﬂumwmmmwmmww

POSSIBILITIES

(inspiriSYs
'nspslnﬁolm et An Overview of the HTTP Protocol as covered in RFCs

Formerly Accel Frontline Limited

18.3 How is it used? (MIME)

MIME passes as a part of the content type of the message header.

> Content-type: text/plain; charset="us- ascii”
» The following example is a typical HTTP Response header (MIME highlighted)

HTTP/1.x 200 OK

Transfer-Encoding: chunked

Date: Sat, 28 Nov 2009 04:36:25 GMT

Server: LiteSpeed Connection: close
X-Powered-By: W3 Total Cache/0.8 Pragma: public
Expires: Sat, 28 Nov 2009 ©5:36:25 GMT
Cache-Control: max-age=3600, public
Content-Type: text/html; charset=UTF-8
Last-Modified: Sat, 28 Nov 2009 03:50:37 GMT
Vary: Accept-Encoding, Cookie, User-Agent

18.4 Support for different languages (MIME)

Message header

> Content-type field

» Put in the header by the client program creating the e-mail for use by the client program used to
display the received message

> Charset= optional parameter; If absent, ASCll is assumed

Content-Type: text/plain; charset= “IS0-8859-1"

> 1S0-8859-1 character standard extends the basic character set of ASCII to include many of the
accented characters used in languages such as German.

18.5 Encoding (MIME)

Binary files need to be “packaged” as text in order to be sent over the internet. MIME uses a BASE-64 binary
encoding scheme to package the data for transfer. Because of this encoding, standard SMTP (Simple Mail
Transfer Protocol), servers did not require any changes. Encoding transforms binary data into a string.
Decoding changes the data back into its original form.

18.6 Base 64 encoding Example (MIME)
> Normal Text:

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla mattis pulvinar ligula. Ut quis neque ut
lorem mollis hendrerit. Curabitur rhoncus, neque vitae sodales condimentum.

> Encoded Text:

TG9yZWegaXBzdWOgZG9sb3Igc210IGFtZXQsIGNvbnN1Y
3R1dHVyIGFkaXBpc2NpbmcgZWxpdC4gTnVsbGEgbWFO
dG1zIHB1bHZpbmFyIGxpZ3VsYS4gVXQgcXVpcyBuZXF1Z
SB1dCBsb3J1bSBtb2xsaXMgaGVuZHJ1cmlOLiBDdXJhYmled
XIgcmhvbmN1cywgbmVxdWwUgdmlOYWUgc29kYWx1lcyBj b25kaWllbnR1bS4=

» An online tool, one can use to experiment can be found at http://www.motobit.com/util/base64-
decoder- encoder.asp

EXPERIENCE
POSSIBILITIES

a EHE holdings group company

[] [] []
An Overview of the HTTP Protocol as covered in RFCs Glspsl['_ ISLYS

Formerly Accel Frontline Limited

18.7 Sending large Messages (MIME)

When sending large messages, the message client splits them into smaller parts. This type of message is
called a multi-part message. Multi-part messages have one of the MIME content types such as content-
type = multipart/related and content-type = multipart/mixed.

19.HTTP Caching

Web pages often contain content that remains unchanged for long periods. For example, an image
containing a company logo may be used without modification for many years. It is wasteful in terms of
bandwidth and round trips to repeatedly download images or other content that is not regularly updated.

HTTP supports caching so that content can be stored locally by the browser and reused when required. Of
course, some types of data such as stock prices and weather forecasts are frequently changed and it is
important that the browser does not display stale versions of these resources. By carefully controlling
caching, it is possible to reuse static content and prevent the storage of dynamic data.

Browser caching is controlled by the use of the Cache-Control, Last-Modified and Expires response headers.

19.1 Preventing Caching
> Servers set the Cache-Control response header to no-cache to indicate that content should not be
cached by the browser:

Cache-Control: no-cache

> Also, the Pragma header is also often used to stop caching by HTTP 1.0 proxies as they do not support
the Cache-Control header:

Pragma: no-cache

19.2 Allowing Caching

The Cache-Control header can be set to one of the following values to allow caching:

> <absent>: If the Cache-Control header is not set, then any cache may store the content.

> Private: The content is intended for use by a single user and should only be cached locally in the
browser.

> Public: The content may be cached in public caches (e.g. shared proxies) and private browser caches.

If the browser is to make effective use of cached content, two extra pieces of information should be
supplied. The first is the modification date/time of the content. The server supplies this in the Last-Modified
response header:

Last-Modified: Wed, 25 Feb 2015 12:00:00 GMT

The second piece of information is the expiration date that is specified with the Expires header:

Expires: Thu, 25 Feb 2016 12:00:00 GMT

This header will set the cache expiration to be 31536000 seconds or one year in the future:

Cache-Control: max-age=31536000

EXPERIENCE CALe
POSSIBILITIES a oldings group campany

(inspiriSYs
'nspsl{,#:olm et An Overview of the HTTP Protocol as covered in RFCs

Formerly Accel Frontline Limited

19.3 Cache Validation and the 304 response

There are a number of situations in which Internet Explorer needs to check whether a cached entry is valid:

» The cached entry has no expiration date and the content is being accessed for the first time in a
browser session

» The cached entry has an expiration date but it has expired
» The user has requested a page update by clicking the Refresh button or pressing F5

» If the cached entry has the last modification date, IE sends it in the If-Modified-Since header of a
GET request message:

GET /images/logo.gif HTTP/1.1

Accept: */*

Referer: http://www.google.com/

Accept-Encoding: gzip, deflate

If-Modified-Since: Wed, 25 Feb 2015 17:42:04 GMT

User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; rv:11.0) like Gecko
Host: www.google.com

» The server checks the If-Modified-Since header and responds accordingly. If the content has not
been changed since the date/time specified, it replies with a status code of 304 and a response
message that just contains headers:

HTTP/1.1 304 Not Modified
Content-Type: text/html
Date: Thu, 26 Feb 2015 10:00:04 GMT

20.SPDY

Not an acronym - pronounced ‘speedy’

» Development between Google and Microsoft
> Preserves existing HTTP semantics — SPDY is purely a framing layer
> Basis for HTTP/2.0

Offers four improvements over HTTP/1.1:
» Multiplexed requests
> Prioritized requests
» Compressed headers
> Server push

21.What is HTTP/2?

HTTP/2 uses a single, multiplexed connection. Maximum connection limit per domain can be ignored.
HTTP/2 compresses header data and sends it in a concise, binary format. Better than the plain text format
used previously. Less need for popular HTTP 1.1 optimizations.

21.1 HTTP/2 Specification
> Started with SPDY - draft 3
» Comprised out of two specifications
e HTTP/2 — RFC7540
* HPACK (header compression) — RFC7541

EXPERIENCE
POSSIBILITIES

a EHE holdings group company

] L] L]
An Overview of the HTTP Protocol as covered in RFCs @Spﬁl!’_ ISLY§

Formerly Accel Frontline Limited

» Implementations
« HTTP/2 over TLS (h2)
e HTTP/2 over TCP (h2c)

21.2 HTTP/2 Over TLS (h2)

HTTP/2 shipped with TLS as optional. Firefox and Chrome developer teams stated they would only
implement HTTP/2 over TLS. Today, only HTTPS:// is allowed for HTTP/2. TLS must be at least v1.2, with
cipher suite restrictions.

21.3 HTTP/2 Over TCP (h2c)
It Uses the Upgrade header. It plans to support on IE, already supported in CURL.

GET/page HTTP/1.1 HTTP/1.1 200 OK

Host: server.example.com Content-length: 243
Connection: Upgrade, HTTP2- Content-type: text/html
Settings

Upgrade: h2c (.. HTTP/1.1 response ..)
HTTP2-Settings: (SETTINGS

payload) --- 0r ---

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Upgrade: h2c

(.. HTTP/2 response ..)

21.4 TCP Connections - HTTP 1.1 versus HTTP/2

P/1 1 Client —
HTTP/2 hent | ———

21.5 HTTP/2.0 Prioritized Requests

A connection may contain multiple streams (each of which consists of a sequence of frames). Each stream
has a 31-bit identifier such as Odd for client-initiated and Even for server-initiated. Each stream has another
31-bit integer that expresses its relative priority. Frames from higher priority streams sent before those
from lower priority streams and allow asynchronous stream processing (unlike HTTP/1.1 Pipelining).

21.6 HTTP/2.0 Compressed Headers

HTTP/1.1 can compress message bodies using gzip or deflate and sends headers in plain text. HTTP/2.0
also provides the ability to compress message headers.

21.7 HTTP/2.0 Push

HTTP/1.1 servers only send messages in response to requests. HTTP/2.0 enables a server to pre-emptively
send (or push) multiple associated resources to a client in response to a single request.

EXPERIENCE CALe
POSSIBILITIES a oldings group company

(inspiriSYs
'nspslo!:ul” firlorst An Overview of the HTTP Protocol as covered in RFCs

Formerly Accel Frontline Limited

21.8 HTTP/2 Multiplexing

Each request/response stream has an ID. Streams comprise of frames (Header, Data...). A TCP connection
can have multiple streams. Frames can be interleaved in the TCP channel. Stream dependencies control
frame prioritization. Server (11IS/ASP.NET) sees streams as TCP Connection.

HTTP 2.0 connection
-] stream1 | stream3 | stream3 | stream1 -
& DATA | HEADERS DATA DATA |
stream 5
=p DATA =3
Client Server

Header Compression (HPACK)

Static table
: Encoded headers
Request headers 1 -authority
:method GET 2 ‘method GET 2
:scheme https 7
:host | example.com » 51 referer » 63
;path | /resource 19| Huffman(“/resource”) |
user-agent | Mozilla/5.0 ... 62 | user-agent | Mozilla/5.0 ... 62
custom-hdr | some-value 63 host | example.com Huffman(*custom-hdr’)
- . Huffman(“some-value”)
Dynamic table
%= Y~ Contenttype Find (Ctri+F)
Res“"_/_ Headers Body Parameters Cookies Timings
Protocol Method Description Content ty
A Request URL: https://http2.akamai.com/
b, HTTP GET 301 A % &
- Moved Permane... Request Method: GET
https://http2.akamai.com/ GET 200 text/htr Status Code: [l 200/
4 Request Headers
httpS.css HTTP/2) GET 200 text/css
httpsy/nttp2.akamai.com/resources/ Accept: text/html, application/xhtml+xml, image/jxr, */*
—— = = — — = : V1 I m— x
a:am{ = 0O Elements | Network | Sources Timeline Profiles Resources Audits Console PageSpeed 92 A1
200@ O | ™ Y | View I =) Preserve log L) Disable cache | No throttling v

) Hide data URLs ()| XHR JS €SS Img Media Font Doc WS Other

Name

Path X | Headers Preview Response Timing
7| http2.akamai.com = » General
» Response Headers (21)
[http2.akamai.com ¥ Request Headers
(S :authority: http2.akamai.com
:method: GET
Si http5.css :path: /

/resources

:scheme: https
accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/web
p,*/*;q=0.8

accept-encoding: gzip, deflate, sdch
accept-language: en-US,en;q=0.8,he;q=0.6

ona

transferred | ...

EXPERIENCE
POSSIBILITIES s LD vostngs roup cmpar

] ° L]
An Overview of the HTTP Protocol as covered in RFCs @lSpslr ISLY§

Formerly Accel Frontline Limited

23.How to Troubleshoot — Wireshark

» Works with Chrome and Firefox only (Windows, Linux, Mac)
> Set SSLKeyLogFile for HTTPS sniffing

> Go to Wireshark->Preferences->Protocols->SSL

C: \> set SSLKEYLOGFILE=C:\temp\sslkeylog.log

A ere ?
SMTP “| secure Sockets Layer
SNA
SNMP RSA keys list Edit...
SoulSeek SSL debug file
SoupBinTCP I I =
SPDY
SPRT Reassemble SSL records spanning multiple TCP segments
:s‘cﬂggc Reassemble SSL Application Data spanning multiple SSL records
SSH [[] Message Authentication Code (MAC), ignore "mac failed”
SsL Pre-Shared-Key [
STANAG 506
STANAG 506 (Pre)-Master-Secret log filename
StarTeam I C:/temp/sslkeylog.log Browse...
STP
STT
‘ L = O
dn 0 IDRB Res=F IEEHQaanH
(W] thttp2 or ss) BAd - Expression... +
DT No. Time Source Source Port Destination Destination Port Protocol Length Info A
73 3.54.. google.com 443 localhost 4523 HTTP2 356 SETTINGS
74 3.54.. google.com 443 localhost 4523 HTTP2 96 WINDOW_UPDATE
77 3.55.. localhost 4523 google.com 443 HTTP2 211 Magic, SETTINGS, WIND..
78 3.55.. localhost 4523 google.com 443 HTTP2 496 HEADERS, WINDOW_UPDATE
81 3.55.. localhost 4523 google.com 443 HTTP2 92 SETTINGS
84 3.64.. google.com 443 localhost 4523 HTTP2 92 SETTINGS
85 3.64.. google.com 443 localhost 4523 HTTP2 572 DATA
87 3.64.. google.com 443 localhost 4523 HTTP2 100 PING
88 3.64.. localhost 4523 google.com 443 HTTP2 100 PING
! 97 3.75.. localhost 4524 www.gstatic.com 443 TLSv1.2 244 Client Hello
99 3.84.. www.gstatic.com 443 localhost 4524 TLSv1.2 1472 Server Hello
i 109 3.86.. www.gstatic.com 443 localhost 4524 TLSv1.2 481 Certificate
f 110 3.86.. www.gstatic.com 443 localhost 4524 TLSv1.2 401 Server Key Exchange, ..
i 112 3.86.. localhost 4524 www.gstatic.com 443 TLSv1.2 180 Client Key Exchange, ..
i 116 3.95.. www.gstatic.com 443 localhost 4524 HTTP2 356 SETTINGS
i 117 3.95.. www.gstatic.com 443 localhost 4524 HTTP2 96 WINDOW_UPDATE
i 120 3.96.. localhost 4524 www.gstatic.com 443 HTTP2 211 Magic, SETTINGS, WIND..

EXPERIENCE CALe
POSSIBILITIES a [l hoteings sroup company

(inspiriSYS
'nspslo!:ul” et An Overview of the HTTP Protocol as covered in RFCs

Formerly Accel Frontline Limited

A - O
a0 IpRBRes=FT sEEQaaan
(A [@ttp2 or ss) EIET -] Expresson... | + |
DT No. Time Source Source Port Destination Destination Port Protocol Length Info A
73 3.54.. google.com 443 localhost 4523 HTTP2 356 SETTINGS
74 3. = = =
77 3.9 Frame 85: 572 bytes on wire (4576 bits), 572 bytes captured (4576 bits) on interface ©
78 3'5 > Ethernet II, Src: Parallel 00:00:18 (©0:1c:42:00:00:18), Dst: Parallel 74:89:ac (0@:1c:42:74:89:ac)
81 3'5 > Internet Protocol Version 4, Src: google.com (216.58.208.46), Dst: localhost (10.211.55.7)
34 3.6 > Transmission Control Protocol, Src Port: 443 (443), Dst Port: 4523 (4523), Seq: 4328, Ack: 948, Len: 518
a5 3'(Secure Sockets Layer
37 3'¢ Vv HyperText Transfer Protocol 2
38 3. > Stream: HEADERS, Stream ID: 13, Length 180
! a7 3'.. Vv HyperText Transfer Protocol 2
i 99 3‘8 Stream: DATA, Stream ID: 13, Length 262
| 109 3.8
| 110 3.§
! 112 3.4) 90 00 00 07 3a 73 74 61 74 75 73 00 00 00 03 33 ees.3sta tus....3 A
! . 30 32 @@ 20 00 od 63 61 63 68 65 2d 63 6f 6e 74 ..ca che-cont
i 1163.9. 72 6f 6c @0 00 @0 @7 70 72 69 76 61 74 65 @0 @@ | rol....p rivate..
| 117 3.¢ 00 Oc 63 6f 6e 74 65 6e 74 2d 74 79 70 65 @0 @@ | ..conten t-type..
! 120 3.9 @0 18 74 65 78 74 2f 68 74 6d 6c 3b 20 63 638 61 ..text/h tml; cha
i 121°3 72 73 65 74 3d 55 54 46 2d 38 @@ 00 20 @8 6¢c 6 rset=UTF -8....lo
63 61 74 69 6f 6e @@ 00 00 3d 68 74 74 70 cation.. .=https:
2f 2f 77 77 77 2e 67 6f 6f 67 6¢c 65 //wwwi.go ogle.co.
2080 69 6c 2f 3f 67 66 65 5f 72 64 3d 6 il/2gfe rd= i v
Frame (572bytes) Decrypted SSL data (189bytes) | Decompressed Header (336 bytes) | Decrypted SSL data (271 bytes)
M 252 google pespns - O
Am @ TRAERe=F o
(W [(http2 or ssi) D -] Bxpresson... +
DT No. Time Source Source Port Destination Destination Port Protocol Length Info N
73 3.54.. google.com 443 localhost 4523 HTTP2 356 SETTINGS
74 3.5 = = = |
77 3.8 ° Frame 85: 572 bytes on wire (4576 bits), 572 bytes captured (4576 bits) on interface @
— 3'; > Ethernet II, Src: Parallel 08:00:18 (©@:1c:42:00:00:18), Dst: Parallel_74:89:ac (@@:1c:42:74:89:ac)
81 3.: > Internet Protocol Version 4, Src: google.com (216.58.208.46), Dst: localhost (10.211.55.7)
a4 3'2 Transmission Control Protocol, Src Port: 443 (443), Dst Port: 4523 (4523), Seq: 4328, Ack: 948, Len: 518
85 3.6 ~ %Y > Frame 85: 572 bytes on wire (4576 bits), 572 bytes captured (4576 bits) on interface @
87 3.6 HYPq > Ethernet II, Src: Parallel ©0:00:18 (@0:1c:42:00:00:18), Dst: Parallel 74:89:ac (@@:1c:42:74:89:ac)
88 3.6 ' Internet Protocol Version 4, Src: google.com (216.58.208.46), Dst: localhost (1€.211.55.7)

97 3.7 ¥ Hypd¢ 5 Transmission Control Protocol, Src Port: 443 (443), Dst Port: 4523 (4523), Seq: 4328, Ack: 948, Len: 518

3 99 Secure Sockets Layer

§ 109 ¥ HyperText Transfer Protocol 2

3 110 > Stream: HEADERS, Stream ID: 13, Length 18@

] 112 V| HyperText Transfer Protocol 2

i 116 > Stream: DATA, Stream ID: 13, Length 262

} 117

} 120

i 121 0000 ©0 01 06 00 @1 @0 00 @0 Od 3c 48 54 4d 4c 3e 3¢ S <HTML>< A

2010 48 45 41 44 3e 3c 6d 65 74 61 20 68 74 74 7@ 2d | HEAD><me ta http-
@020 65 71 75 69 76 3d 22 63 6f 6e 74 65 6e 74 2d 74
@03e 79 7@ 65 22 20 63 6f 6e 74 65 6e 74 3d 22 74 65
@049 78 74 2f 68 74 6d 6c 3b 63 68 61 72 73 65 74 3d
@05¢ 75 74 66 2d 38 22 3e @a 3c 54 49 54 4c 45 3e 33
@060 3@ 32 2@ 4d 6f 76 65 64 3c 2f 54 49 54 4c 45 3e
207¢ 3c 2f 48 45 41 44 3e 3c 42 4f 44 59 3e @a 3c 48
2082 31 3e 33 3@ 32 20 4d 6f 76 65 64 3c 2f 48 31 3e

Frame (572 bytes) Decrypted SSL data (189 bytes) Decompressed Header (336 bytes) l Decrypted SSL data (271 bytes)]

ype” con tent="te
xt/html; charset=
utf-8">. <TITLE>3
02 Moved </TITLE>
</HEAD>< BODY>.<H
JH1> v

Frame

Server Push (Promise)

After the server responds with an HTML, it waits for requests to embedded resources. Server code knows
which resources client needs such as JavaScript, CSS, Images, and HTML pages of future navigation.

In ASP.NET, use HttpResponse.PushPromise

String path = Request.ApplicationPath;
Response.PushPromise(path + “/Images/1.png”
Response.PushPromise(path + “/Images/2.png”

)s
)s

EXPERIENCE
POSSIBILITIES

SpiriSYS

Solutions Limited

An Overview of the HTTP Protocol as covered in RFCs

24.REST (Representational State Transfer)

REST stands for Representational State Transfer. (It is sometimes spelled “ReST.”) It relies on a stateless,
client-server, cacheable communications protocol, and in virtually all cases, the HTTP protocol is used. REST
is an architecture style for designing networked applications. The idea is that, rather than using complex
mechanisms such as CORBA, RPC or SOAP to connect between machines, simple HTTP is used to make calls
between machines. In many ways, the World Wide Web itself, based on HTTP, viewed as a REST-based
architecture.

Formerly Accel Frontline Limited

RESTful applications use HTTP requests to post data (create and/or update), read data (e.g., make queries),
and delete data. Thus, REST uses HTTP for all four CRUD (Create/Read/Update/Delete) operations.

DELETE

REST based Service

$.

Interoperate with service using XML

¥

JAVA PHP s ASP
25.REST HTTP Verbs

HTTP

Verb CRUD Example Response

POST Create POST http://www.example.com/customers 201 (Created), 'Location' header with link to
POST http://www.example.com/customers/12345/orders. /customers/{id} containing new ID.

GET Read GET http://www.example.com/customers/12345 200 (OK), list of customers. Use pagination,
GET http://www.example.com/customers/12345/orders sorting and filtering to navigate big lists.

PUT Update/Replace PUT http.//www.example.com/customers/12345 405 (Method Not Allowed), unless you want

PUT http.//www.example.com/customers/12345/orders/98765 to update/replace every resource in the
entire collection.

PATCH Update/Modify PATCH http://www.example.com/customers/12345 405 (Method Not Allowed), unless you want
PATCH to modify the collection itself.
http://www.example.com/customers/12345/orders/98765

DELETE Delete DELETE http://www.example.com/customers/12345 405 (Method Not Allowed), unless you want
DELETE http://www.example.com/customers/12345/orders to delete the whole collection—not often
desirable.
EXPERIENCE EHE" i
a oldings group compan:
POSSIBILITIES Y

25.1 GET

$ curl -H "Accept:application/json"
http://localhost:8888/demo-rest-jersey-
spring/podcasts/1

25.2 POST

curl -i -X POST -H "Content-Type:application/json"
http://localhost:8888/demo-rest-jersey-
spring/podcasts/ -d '{"title":"- The Scientists
Podcast - Stripping Down
Science","Podcastpedia":"http://www.podcastpedia.o
rg/podcasts/792/-The-Scientists-Podcast-Stripping-
Down-
Science","feed":"feed_placeholder","description":"
The Scientists flagship science show brings you a
lighthearted look at the latest scientific
breakthroughs, interviews with the world top
scientists, answers to your science questions and
science experiments to try at home."}'

25.3 PUT

curl -i -X PUT -H "Content-Type:application/json"
http://localhost:8888/demo-rest-jersey-
spring/podcasts/2 -d '{"id":2,"title":"Quarks & Co
- zum

Mitnehmen", "linkOnPodcastpedia":"http://www.podcas
tpedia.org/quarks"”,"feed":"http://podcast.wdr.de/q
uarks.xml","description"”:"Quarks & Co: Das
Wissenschaftsmagazin"}'

EXPERIENCE
POSSIBILITIES

(inspiriSYs
'nspsluﬁlm oot An Overview of the HTTP Protocol as covered in RFCs

Formerly Accel Frontline Limited

{

"id": 1,

"title": "- The Naked Scientists Podcast -
Stripping Down Science",

"linkOnPodcastpedia™:

"http://www.podcastpedia.org/podcasts/792/-The-
Naked-Scientists-Podcast-Stripping-Down-Science",

"feed": "feed_placeholder”,

"description”: "The Scientists flagship science
show brings you a lighthearted look at the latest
scientific breakthroughs, interviews with the world
top scientists, answers to your science questions and
science experiments to try at home.",

"insertionDate": "2014-10-29T10:46:02.00+0100"

}

HTTP/1.1 201 Created

Location: http://localhost:8888/demo-rest-jersey-
spring/podcasts/2

Content-Type: text/html
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT
Access-Control-Allow-Headers: X-Requested-With,
Content-Type, X-Codingpedia

Vary: Accept-Encoding

Content-Length: 60

Server: Jetty(9.0.7.v20131107)

HTTP/1.1 201 Created

Location: http://localhost:8888/demo-rest-jersey-
spring/podcasts/2

Content-Type: text/html
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT
Access-Control-Allow-Headers: X-Requested-With,
Content-Type, X-Codingpedia

Vary: Accept-Encoding

Content-Length: 60

Server: Jetty(9.0.7.v20131107)

a EHE holdings group company

(in'spiriSYs

Formerly Accel Frontline Limited

An Overview of the HTTP Protocol as covered in RFCs

25.4 DELETE

REQUEST RESPONSE ‘

curl -i -X DELETE http://localhost:8888/demo-rest- HTTP/1.1 204 No Content

jersey-spring/podcasts/ Date: Tue, 25 Nov 2014 14:10:17 GMT
Server: Jetty(9.0.7.v20131107)
Content-Type: text/html
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE,
PUT
Access-Control-Allow-Headers: X-Requested-With,
Content-Type, X-Codingpedia
Vary: Accept-Encoding
Via: 1.1 v1dn680:8888
Content-Length: ©

26.WebSocket

WebSocket is a computer communications protocol, providing full-duplex communication channels over a
single TCP connection. The WebSocket protocol was standardized by the IETF as RFC 6455 in 2011, and the
WebSocket APl in Web IDL is being standardized by the W3C. WebSocket is a different TCP protocol from
HTTP.

Trading Gateway

News Feed

Payment System

. Database Storage
Internet . =
Application Logic

Messaging
Service

Web Service

&S

ERP/CRM System

Browsers WebSocket Desktop Solution
Server or Gateway

27.Protocol handshake

To establish a WebSocket connection, the client sends a WebSocket handshake request, for which the
server returns a WebSocket handshake response, as shown in the example below.

Client request (just like in HTTP, each line ends with \r\n and there must be an extra blank line at the
end)

GET /chat HTTP/1.1

Host: server.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13

Origin: http://example.com

EXPERIENCE CALe
POSSIBILITIES a [l hoteings sroup company

(inspiriSYS
'nspsl{,ﬁlns et An Overview of the HTTP Protocol as covered in RFCs

Formerly Accel Frontline Limited

Server response

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: HSmrc@sM1YUKAGmMm5OPpG2HaGWK=
Sec-WebSocket-Protocol: chat

28.HTTP Long Polling

Web app developers can implement a technique called HTTP long polling, where the client polls the server
requesting new information. The server holds the request open until new data is available. Once available,
the server responds and sends the new information. When the client receives the new information, it
immediately sends another request, and the operation is repeated. This effectively emulates a server push

feature.
Client(s) Server
Server Event Examples
Stock quote prce change, score
change. updated business metric
29.Web DAV

Web Distributed Authoring and Versioning (WebDAV) is an extension of the Hypertext Transfer
Protocol (HTTP) that allows clients to perform remote Web content authoring operations.

HTTP/1.1 still essentially a read-only protocol, as deployed
» Web Distributed Authoring and Versioning — HTTP extension
» The most recent version from 1999 — RFC2518

Extra methods:

PROPFIND — retrieve resource metadata

PROPPATCH — change/delete resource metadata

MKCOL — create a collection (directory)

COPY — copy resource

MOVE — move the resource

LOCK/UNLOCK — lock/release resource (so that others cannot change it)

VVVVYVYYVYYVY

EXPERIENCE
POSSIBILITIES s LD vostngs roup cmpar

] ° L]
An Overview of the HTTP Protocol as covered in RFCs @lSpslr ISLY§

Formerly Accel Frontline Limited

30.JWT (JSON Web Token) — SSO

JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and self-contained way for
securely transmitting information between parties as a JSON object. This information can be verified and
trusted because it is digitally signed. JWTs can be signed using a secret (with the HMAC algorithm) or a
public/private key pair using RSA.

JSON Web Tokens consist of three parts separated by dots (.), which includes Header, Payload, and
Signature. Therefore, a JWT typically looks like the following. xxxxx.yyyyy.zzzzz

Browser
Login T JWT token
i based cooki
credentials ased cookies
Functional
JWT token request
response
Validation of transactions
JWT for time
and credential
change

Application

Resources

Feedback

Resource

31.JWT (JSON Web Token)
» Header
The header typically consists of two parts: the type of the token, which is JWT, and the hashing
algorithm being used, such as HMAC SHA256 or RSA.
For example:

{
“algn . “H5256”,

“typn : CINT”
}

> Payload
The second part of the token is the payload, which contains the claims. Claims are statements about
an entity (typically, the user) and additional metadata. There are three types of claims: registered,
public, and private claims.

{
“sub”: “1234567890”,
“name”: “John Doe”,
“admin®: true

}

EXPERIENCE CALe
POSSIBILITIES a [l hoteings sroup company

(inspiriSYS
'nspsl{,ﬁlns et An Overview of the HTTP Protocol as covered in RFCs

Formerly Accel Frontline Limited

> Signature
To create the signature part you have to take the encoded header, the encoded payload, a secret,

the algorithm specified in the header, and sign that. The signature is used to verify that the sender
of the JWT and to ensure that the message was not changed along the way.

HMACSHA256(
base64UrlEncode(header) + “.” +
base64UrlEncode(payload),
secret)

> Final Output
By putting all together, the final output shows as follows:

eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCI9.
eyJzdWIi0iIXMjMONTY30DkwIiwibmFtZSI6IkpvaGa
gRGI1IiwiaXNTb2NpYWwiOnRydWV9.
4pcPyMDO901PSyXnrXCjTwXyr4BsezdI1AVTmud2fu4

L
1

(= C A) wte =4 57

NeJUUT op—

Dt
0

ALGORITHM 15250

Encoded Decoded

FEADER
eyJhbGciOiJIUzITNiIsINRScCIS
TkpXVCJ9 .eyJzdWIi0iIxMiMENTY ¢
alg": "HS256"
30DkwIiwibmFtZSI6IkpvaG4gRGY s ok
1TiwiYWRtaW4iOnRydWVS . TIVAGS
0rM7E2cBab3@RMHrHDCEfxjoYZge

FONFh7HgQ

PAYLOAD:

& Signature Verified

EXPERIENCE
POSSIBILITIES s LD vostngs roup cmpar

