

An Overview of the HTTP Protocol as covered in RFCs 1

Contents
1. Introduction and History .. 3

2. HTTP Versions ... 3

3. HTTP Protocol Request/Response ... 3

4. HTTP/1.0 and earlier .. 4

5. HTTP Keep-Alive ... 4

6. HTTP Pipelining ... 4

7. HTTP .. 5

8. HTTP Intermediaries: Proxy ... 5

9. HTTP Intermediaries: Tunnel ... 6

10. HTTP Methods .. 6

11. HTTP/1.1 Request Header Examples ... 6

12. HTTP/1.1 Response Header Examples ... 6

13. Cookies .. 7

13.1 Types of Cookies ... 7

14. Authentication .. 8

15. User Agent .. 9

16. Content Negotiation ... 9

17. Transfer Encoding ... 9

17.1 Chunked Transfer Encoding ... 10

18. MIME Encoding ... 10

18.1 What is it used for? (MIME) ... 10

18.2 MIME Format .. 10

18.3 How is it used? (MIME) .. 11

18.4 Support for different languages (MIME) ... 11

18.5 Encoding (MIME) .. 11

18.6 Base 64 encoding Example (MIME) ... 11

18.7 Sending large Messages (MIME) .. 12

19. HTTP Caching .. 12

19.1 Preventing Caching ... 12

19.2 Allowing Caching .. 12

19.3 Cache Validation and the 304 response .. 13

20. SPDY .. 13

21. What is HTTP/2? ... 13

21.1 HTTP/2 Specification .. 13

21.2 HTTP/2 Over TLS (h2) ... 14

An Overview of the HTTP Protocol as covered in RFCs

2

21.3 HTTP/2 Over TCP (h2c) ... 14

21.4 TCP Connections - HTTP 1.1 versus HTTP/2 ... 14

21.5 HTTP/2.0 Prioritized Requests ... 14

21.6 HTTP/2.0 Compressed Headers ... 14

21.7 HTTP/2.0 Push .. 14

21.8 HTTP/2 Multiplexing .. 15

22. How to Troubleshoot - Dev Tools .. 15

23. How to Troubleshoot – Wireshark ... 16

24. REST (Representational State Transfer) ... 18

25. REST HTTP Verbs ... 18

25.1 GET .. 19

25.2 POST .. 19

25.3 PUT .. 19

25.4 DELETE ... 20

26. WebSocket .. 20

27. Protocol handshake .. 20

28. HTTP Long Polling ... 21

29. Web DAV ... 21

30. JWT (JSON Web Token) – SSO .. 22

31. JWT (JSON Web Token) .. 22

An Overview of the HTTP Protocol as covered in RFCs 3

1. Introduction and History
Request for Comments (RFC) denotes a type of publication from the Internet Engineering Task Force (IETF)

and Internet Society (ISOC). IETF and ISOC are the technical development and standard-setting bodies for

the Internet and official documents of Internet specifications, communications protocols, procedures, and

events. RFC covers the memorandum, behaviors, research, and innovations associated with the operations

of the Internet and systems connected to the internet. RFC is submitted for peer review to convey new

concepts and information. Steve Crocker created RFC documents in 1969 to record informal notes about

the development of ARPANET (Advanced Research Projects Agency Network).

2. HTTP Versions
Following lists specify Application protocol for distributed hypermedia

 First documented in 1991 (HTTP/0.9)

 HTTP/1.0 introduced in 1996 (RFC 1945)

 HTTP/1.1 updated in 1999 (RFC 2616)

 HTTP/2.0 updated in 2015 (RFC 7540)

3. HTTP Protocol Request/Response
Hyper Text Transfer (HTTP) Protocol Request/Response includes Client and server exchange

request/response messages, which uses the TCP protocol. For Client and server exchange

request/response, the typical port number is 80.

An Overview of the HTTP Protocol as covered in RFCs

4

4. HTTP/1.0 and earlier
Before HTTP/1.1, each HTTP request used a separate TCP connection as shown in the figure below.

5. HTTP Keep-Alive
HTTP/1.1 introduced the keyword “Keep-Alive.” TCP connections reused for multiple HTTP requests. HTTP

uses the keyword “Keep-Alive” in the “Connection” header to denote that the connection is open for

additional messages. “Keep-Alive” exists default in HTTP/1.1 while in HTTP/1.0, the default is to use a new

connection for each request or reply pair.

6. HTTP Pipelining
HTTP/1.1 pipelining is a technique in which multiple HTTP requests sent on a single TCP connection without

waiting for the corresponding responses.

An Overview of the HTTP Protocol as covered in RFCs 5

7. HTTP
Hyper Text Transfer Protocol, a direct connection between client and server. It serves as intermediaries in

the request/response chain that include the following elements:

 Proxy
 Gateway
 Tunnel

8. HTTP Intermediaries: Proxy

GET http://cryptome.org/HTTP/1.1
Host: cryptome.org
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en; rv:1.9.0.3) Gecko/20080528 Epiphany/2.22 Firefox/3.0
Accept: text/html, application/xhtml+xml, application/xml, q=0.9, */*, q=0.8
Accept-Encoding: gzip, deflate
Accept-Charset: ISO-8859-1, utf-8, q=0.7, *; q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive
If-Modified-Since: Tue, 14 Oct 2008 13:59:19 GMT
If-None-Match: “e01922-62e9-45937059ec2de”
Cache-Control: max-age=0

http://cryptome.org/HTTP/1.1

An Overview of the HTTP Protocol as covered in RFCs

6

9. HTTP Intermediaries: Tunnel
HTTP tunneling is the process in which communications encapsulated by using the HTTP protocol. An HTTP

tunnel often used for network locations restricted connectivity or are behind firewalls or proxy servers. It

includes end-to-end encryption and SSL port 8100.

10. HTTP Methods
 GET - retrieves whatever information identified by the Request-URL
 POST - sends data to the server for updates.
 PUT - requests that the enclosed entity stored under the supplied Request-URL.
 DELETE - requests the origin server to delete the resource identified by the Request-URL.
 HEAD - Similar to the GET method, except that the server must not return a message-body in the

response.
 TRACE - Allows the client to see what received at the other end of the request chain and use that

data for testing

11. HTTP/1.1 Request Header Examples
 Accept: specify desired media type of response
 Accept-Language: specify the desired language of response
 Date: date/time at which the message originated
 Host: host and port number of requested resource
 If-Match: conditional request
 Referrer: URL of the previously visited resource
 User-Agent: identifier string for a Web browser or user agent

12. HTTP/1.1 Response Header Examples
 Allow: lists methods supported by request URI
 Content-Language: the language of representation
 Content-Type: media type of representation
 Content-Length: length in bytes of representation
 Date: date/time at which the message originated
 Expires: date/time after which response is considered stale
 ETag: an identifier for a version of the resource (message digest)
 Last-Modified: date/time at which representation was last change

An Overview of the HTTP Protocol as covered in RFCs 7

13. Cookies
A cookie is a text file stored on the hard drive (more precisely in the browser folder) when visiting a website.

13.1 Types of Cookies
 Session: They expire when the browser is closed or remained idle. For example, they are used in e-

commerce websites to continue browsing without losing chosen items in the cart.
 Permanent: They persist even after the browser exits. They have an expiration date though, as per

law that limits lasting more than six months. They assist in remembering passwords and login
information to reduce the need of re-entering them every time.

 Third party: Cookies attributes usually correspond to the website domain they are on and not for
third-party cookies. Third-Party websites such as advertisers install these cookies. Third-party
cookies collect data about browsing habits and track them across different websites. Websites such
as Facebook, Flickr, Google Analytics, Google Maps, Google Plus, Sound Cloud, Tumblr, Twitter, and
YouTube use third-party cookies.

The Set-Cookie HTTP response header sends cookies from the server to the user agent. This header from

the server tells the client to store a cookie.

This header from the server tells the client to store a cookie.

Now, with every new request to the server, the browser will send back all previously stored cookies to the

server using the Cookie header.

Set-Cookie: <cookie-name>=<cookie-value>

HTTP/1.0 200 OK

Content-type: text/html

Set-Cookie: yummy_cookie=newcookie

Set-Cookie: tasty_cookie=session

GET /sample_page.html HTTP/1.1

Host: www.example.org

Cookie: yummy_cookie=newcookie; tasty_cookie=session

An Overview of the HTTP Protocol as covered in RFCs

8

14. Authentication
HTTP supports the use of several authentication mechanisms to control access to pages and other

resources. These mechanisms are all based around the use of the 401-status code and the WWW-

Authenticate response header.

The most widely used HTTP authentication mechanisms are as follows:

 Basic: The client sends the user name and password as unencrypted base64 encoded text. It should

only be used with HTTPS, as the password can be easily captured and reused over HTTP.

 Digest: The client sends a hashed form of the password to the server. Though the password cannot

catch over HTTP, it may be possible to replay requests using the hashed password.

 NTLM: This uses a secure challenge/response mechanism that prevents password capture or replay

attacks over HTTP. However, the authentication is per connection and will only work with HTTP/1.1

persistent connections. For this reason, it may not work through all HTTP proxies and can introduce

large numbers of network roundtrips if connections regularly closed by the web server.

* Force Authentication

If an HTTP receives an anonymous request for a protected resource it can force the use of Basic

authentication by rejecting the request with a 401 (Access Denied) status code and setting the WWW-

Authenticate response header as shown below:

The word Basic in the WWW-Authenticate selects the authentication mechanism that the HTTP client must

use to access the resource. The realm string can be set to any value to identify the secure area and may be

used by HTTP clients to manage passwords.

Most web browsers will display a login dialog when this response is received, allowing the user to enter a

Username and Password. This information is then used to retry the request with an Authorization request

header:

HTTP/1.1 401 Access Denied
WWW – Authenticate: Basic realm= “My Server”
Content-Length: 0

GET /securefiles/ HTTP/1.1
Host: www.httpwatch.com
Authorization: Basic aHR0cHdhdGNoCmY=

An Overview of the HTTP Protocol as covered in RFCs 9

15. User Agent
In computing, a user agent is a software (a software agent) that is acting on behalf of a user. One common

use of the term refers to a web browser telling website information about the browser and operating

system. This allows the website to customize content for the capabilities of a particular device, but also

raises privacy issues. In HTTP, the User-Agent string often used for content negotiation, where the origin

server selects suitable content or operating parameters for the response.

16. Content Negotiation
Content negotiation refers to mechanisms defined as a part of HTTP that make it possible to serve different

versions of a document at the same URL, so that user agents can specify which version fits their capabilities

the best.

HTTP provides for several different content negotiation mechanisms including:

 Server-driven
 Agent-driven
 Transparent
 hybrid

Client Browser Request:

Server-driven or proactive content negotiation is performed by algorithms on the server, which choose

among the possible variant representations. This is commonly performed based on a user-agent provided

acceptance criteria. To summarize how this works, when a user agent submits a request to a server, the

user agent informs the server what media types it understands with ratings of how well it understands

them. More precisely, the user agent provides an Accept HTTP header that lists acceptable media types

and associated quality factors. The server is then able to supply the version of the resource that best fits

the user agent's needs

Example Negotiation Headers

 Accept: Which media types are acceptable for the response, such as “application/json,”
“application/xml” or a custom media type such as “application/vnd.example+xml.”

 Accept-Charset: Which character sets are acceptable, such as UTF-8 or ISO 8859-1.
 Accept-Encoding: Which content encodings are acceptable, such as gzip.
 Accept-Language: The preferred natural language, such as "en-us."

17. Transfer Encoding
The Transfer-Encoding header specifies the form of encoding used to transfer the entity to the user.

Transfer-Encoding is a hop-by-hop header applicable to a message between two nodes, not to a resource

itself. Each segment of a multi-node connection can use different Transfer-Encoding values. If you want to

compress data over the whole connection, use the end-to-end header Content-Encoding header instead.

Accept-Language: de; q=1.0, en; q=0.5

Accept: text/html; q=1.0, text/*; q=0.8, image/gif; q=0.6, image/jpeg; q=0.6, image/*; q=0.5, */*; q=0.1

Transfer-Encoding: chunked

Transfer-Encoding: compress

Transfer-Encoding: deflate

Transfer-Encoding: gzip

Transfer-Encoding: identity

// Several Values can be listed, separated by a comma

Transfer-Encoding: gzip, chunked

An Overview of the HTTP Protocol as covered in RFCs

10

17.1 Chunked Transfer Encoding
Chunked transfer encoding is a streaming data transfer mechanism available in version 1.1 of the Hypertext

Transfer Protocol (HTTP). In chunked transfer encoding, the data stream divided into a series of non-

overlapping "chunks." The chunks are sent out and received independently of one another. No knowledge

of the data stream outside the processing chunk is necessary for both the sender and the receiver at any

given time.

The size in bytes precedes each chunk. The transmission ends when a zero-length chunk received. The

chunked keyword in the Transfer-Encoding header indicates a chunked transfer. This encoding is beneficial

if knowledge on the response size is unclear and data size is large.

Encoded data

18. MIME Encoding
HTTP is largely a text-based protocol. Binary content needs some way of transmission. MIME is an acronym

for Multipurpose Internet Mail Extension. It is used to describe message content types. MIME messages

can contain the text, images, audio, video and other application-specific data (For examples: PDF files,

Microsoft Word Documents, and so on).

18.1 What is it used for? (MIME)
It assists to make internet messages richer. It allows applications (and users) to exchange rich content other

than text. It is an extension to the original email specification (RFC-822). RFC documents such as RFC-2045

through RFC-2049 defines about MIME. A Request for Comments (RFC) is a document published by the

Internet Engineering Task Force (IETF) describing an internet standard.

18.2 MIME Format
MIME types are defined using a <type>/<subtype> [optional parameters] format. Some typical examples

are as follows:

MIME Type Extension(s)

text/plain txt

application/vnd.ms-excel xls

application/pdf pdf

text/html htm; html

text/css css

HTTP/1.1 200 OK

Content-Type: text/plain

Transfer-Encoding: chunked

7\r\n

Mozilla\r\n

9\r\n

Developer\r\n

7\r\n

Network\r\n

0\r\n

\r\n

An Overview of the HTTP Protocol as covered in RFCs 11

18.3 How is it used? (MIME)
MIME passes as a part of the content type of the message header.

 Content-type: text/plain; charset=“us- ascii”
 The following example is a typical HTTP Response header (MIME highlighted)

18.4 Support for different languages (MIME)
Message header

 Content-type field

 Put in the header by the client program creating the e-mail for use by the client program used to

display the received message

 Charset= optional parameter; If absent, ASCII is assumed

 ISO-8859-1 character standard extends the basic character set of ASCII to include many of the

accented characters used in languages such as German.

18.5 Encoding (MIME)
Binary files need to be “packaged” as text in order to be sent over the internet. MIME uses a BASE-64 binary
encoding scheme to package the data for transfer. Because of this encoding, standard SMTP (Simple Mail
Transfer Protocol), servers did not require any changes. Encoding transforms binary data into a string.
Decoding changes the data back into its original form.

18.6 Base 64 encoding Example (MIME)
 Normal Text:

 Encoded Text:

 An online tool, one can use to experiment can be found at http://www.motobit.com/util/base64-

decoder- encoder.asp

HTTP/1.x 200 OK
Transfer-Encoding: chunked
Date: Sat, 28 Nov 2009 04:36:25 GMT
Server: LiteSpeed Connection: close
X-Powered-By: W3 Total Cache/0.8 Pragma: public
Expires: Sat, 28 Nov 2009 05:36:25 GMT
Cache-Control: max-age=3600, public
Content-Type: text/html; charset=UTF-8
Last-Modified: Sat, 28 Nov 2009 03:50:37 GMT
Vary: Accept-Encoding, Cookie, User-Agent

Content-Type: text/plain; charset= “ISO-8859-1”

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla mattis pulvinar ligula. Ut quis neque ut
lorem mollis hendrerit. Curabitur rhoncus, neque vitae sodales condimentum.

TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQsIGNvbnNlY

3RldHVyIGFkaXBpc2NpbmcgZWxpdC4gTnVsbGEgbWF0

dGlzIHB1bHZpbmFyIGxpZ3VsYS4gVXQgcXVpcyBuZXF1Z

SB1dCBsb3JlbSBtb2xsaXMgaGVuZHJlcml0LiBDdXJhYml0d

XIgcmhvbmN1cywgbmVxdWUgdml0YWUgc29kYWxlcyBj b25kaW1lbnR1bS4=

An Overview of the HTTP Protocol as covered in RFCs

12

18.7 Sending large Messages (MIME)
When sending large messages, the message client splits them into smaller parts. This type of message is

called a multi-part message. Multi-part messages have one of the MIME content types such as content-

type = multipart/related and content-type = multipart/mixed.

19. HTTP Caching
Web pages often contain content that remains unchanged for long periods. For example, an image

containing a company logo may be used without modification for many years. It is wasteful in terms of

bandwidth and round trips to repeatedly download images or other content that is not regularly updated.

HTTP supports caching so that content can be stored locally by the browser and reused when required. Of

course, some types of data such as stock prices and weather forecasts are frequently changed and it is

important that the browser does not display stale versions of these resources. By carefully controlling

caching, it is possible to reuse static content and prevent the storage of dynamic data.

Browser caching is controlled by the use of the Cache-Control, Last-Modified and Expires response headers.

19.1 Preventing Caching
 Servers set the Cache-Control response header to no-cache to indicate that content should not be

cached by the browser:

 Also, the Pragma header is also often used to stop caching by HTTP 1.0 proxies as they do not support

the Cache-Control header:

19.2 Allowing Caching
The Cache-Control header can be set to one of the following values to allow caching:

 <absent>: If the Cache-Control header is not set, then any cache may store the content.
 Private: The content is intended for use by a single user and should only be cached locally in the

browser.
 Public: The content may be cached in public caches (e.g. shared proxies) and private browser caches.

If the browser is to make effective use of cached content, two extra pieces of information should be

supplied. The first is the modification date/time of the content. The server supplies this in the Last-Modified

response header:

The second piece of information is the expiration date that is specified with the Expires header:

This header will set the cache expiration to be 31536000 seconds or one year in the future:

Last-Modified: Wed, 25 Feb 2015 12:00:00 GMT

Expires: Thu, 25 Feb 2016 12:00:00 GMT

Cache-Control: max-age=31536000

Cache-Control: no-cache

Pragma: no-cache

An Overview of the HTTP Protocol as covered in RFCs 13

19.3 Cache Validation and the 304 response
There are a number of situations in which Internet Explorer needs to check whether a cached entry is valid:

 The cached entry has no expiration date and the content is being accessed for the first time in a

browser session

 The cached entry has an expiration date but it has expired

 The user has requested a page update by clicking the Refresh button or pressing F5

 If the cached entry has the last modification date, IE sends it in the If-Modified-Since header of a

GET request message:

 The server checks the If-Modified-Since header and responds accordingly. If the content has not
been changed since the date/time specified, it replies with a status code of 304 and a response
message that just contains headers:

20. SPDY
Not an acronym - pronounced ‘speedy’

 Development between Google and Microsoft

 Preserves existing HTTP semantics – SPDY is purely a framing layer

 Basis for HTTP/2.0

Offers four improvements over HTTP/1.1:

 Multiplexed requests

 Prioritized requests

 Compressed headers

 Server push

21. What is HTTP/2?
HTTP/2 uses a single, multiplexed connection. Maximum connection limit per domain can be ignored.

HTTP/2 compresses header data and sends it in a concise, binary format. Better than the plain text format

used previously. Less need for popular HTTP 1.1 optimizations.

21.1 HTTP/2 Specification
 Started with SPDY - draft 3
 Comprised out of two specifications

• HTTP/2 – RFC7540

• HPACK (header compression) – RFC7541

GET /images/logo.gif HTTP/1.1
Accept: */*
Referer: http://www.google.com/
Accept-Encoding: gzip, deflate
If-Modified-Since: Wed, 25 Feb 2015 17:42:04 GMT
User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; rv:11.0) like Gecko
Host: www.google.com

HTTP/1.1 304 Not Modified
Content-Type: text/html
Date: Thu, 26 Feb 2015 10:00:04 GMT

An Overview of the HTTP Protocol as covered in RFCs

14

 Implementations
• HTTP/2 over TLS (h2)

• HTTP/2 over TCP (h2c)

21.2 HTTP/2 Over TLS (h2)
HTTP/2 shipped with TLS as optional. Firefox and Chrome developer teams stated they would only

implement HTTP/2 over TLS. Today, only HTTPS:// is allowed for HTTP/2. TLS must be at least v1.2, with

cipher suite restrictions.

21.3 HTTP/2 Over TCP (h2c)
It Uses the Upgrade header. It plans to support on IE, already supported in CURL.

21.4 TCP Connections - HTTP 1.1 versus HTTP/2

21.5 HTTP/2.0 Prioritized Requests
A connection may contain multiple streams (each of which consists of a sequence of frames). Each stream

has a 31-bit identifier such as Odd for client-initiated and Even for server-initiated. Each stream has another

31-bit integer that expresses its relative priority. Frames from higher priority streams sent before those

from lower priority streams and allow asynchronous stream processing (unlike HTTP/1.1 Pipelining).

21.6 HTTP/2.0 Compressed Headers
HTTP/1.1 can compress message bodies using gzip or deflate and sends headers in plain text. HTTP/2.0

also provides the ability to compress message headers.

21.7 HTTP/2.0 Push
HTTP/1.1 servers only send messages in response to requests. HTTP/2.0 enables a server to pre-emptively

send (or push) multiple associated resources to a client in response to a single request.

 GET/page HTTP/1.1
Host: server.example.com
Connection: Upgrade, HTTP2-
Settings
Upgrade: h2c
HTTP2-Settings: (SETTINGS
payload)

HTTP/1.1 200 OK
Content-length: 243
Content-type: text/html

(… HTTP/1.1 response …)

--- Or ---

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Upgrade: h2c

(… HTTP/2 response …)

An Overview of the HTTP Protocol as covered in RFCs 15

21.8 HTTP/2 Multiplexing
Each request/response stream has an ID. Streams comprise of frames (Header, Data…). A TCP connection

can have multiple streams. Frames can be interleaved in the TCP channel. Stream dependencies control

frame prioritization. Server (IIS/ASP.NET) sees streams as TCP Connection.

Header Compression (HPACK)

22. How to Troubleshoot - Dev Tools

An Overview of the HTTP Protocol as covered in RFCs

16

23. How to Troubleshoot – Wireshark
 Works with Chrome and Firefox only (Windows, Linux, Mac)

 Set SSLKeyLogFile for HTTPS sniffing

 Go to Wireshark->Preferences->Protocols->SSL

C: \> set SSLKEYLOGFILE=C:\temp\sslkeylog.log

An Overview of the HTTP Protocol as covered in RFCs 17

Server Push (Promise)

After the server responds with an HTML, it waits for requests to embedded resources. Server code knows

which resources client needs such as JavaScript, CSS, Images, and HTML pages of future navigation.

In ASP.NET, use HttpResponse.PushPromise

String path = Request.ApplicationPath;
Response.PushPromise(path + “/Images/1.png”);
Response.PushPromise(path + “/Images/2.png”);

An Overview of the HTTP Protocol as covered in RFCs

18

24. REST (Representational State Transfer)
REST stands for Representational State Transfer. (It is sometimes spelled “ReST.”) It relies on a stateless,

client-server, cacheable communications protocol, and in virtually all cases, the HTTP protocol is used. REST

is an architecture style for designing networked applications. The idea is that, rather than using complex

mechanisms such as CORBA, RPC or SOAP to connect between machines, simple HTTP is used to make calls

between machines. In many ways, the World Wide Web itself, based on HTTP, viewed as a REST-based

architecture.

RESTful applications use HTTP requests to post data (create and/or update), read data (e.g., make queries),

and delete data. Thus, REST uses HTTP for all four CRUD (Create/Read/Update/Delete) operations.

25. REST HTTP Verbs
HTTP

Verb CRUD Example Response

POST Create POST http://www.example.com/customers
POST http://www.example.com/customers/12345/orders.

201 (Created), 'Location' header with link to
/customers/{id} containing new ID.

GET Read GET http://www.example.com/customers/12345
GET http://www.example.com/customers/12345/orders

200 (OK), list of customers. Use pagination,
sorting and filtering to navigate big lists.

PUT Update/Replace PUT http://www.example.com/customers/12345
PUT http://www.example.com/customers/12345/orders/98765

405 (Method Not Allowed), unless you want
to update/replace every resource in the
entire collection.

PATCH Update/Modify PATCH http://www.example.com/customers/12345
PATCH
http://www.example.com/customers/12345/orders/98765

405 (Method Not Allowed), unless you want
to modify the collection itself.

DELETE Delete DELETE http://www.example.com/customers/12345
DELETE http://www.example.com/customers/12345/orders

405 (Method Not Allowed), unless you want
to delete the whole collection—not often
desirable.

An Overview of the HTTP Protocol as covered in RFCs 19

25.1 GET

REQUEST RESPONSE (JSON)

$ curl -H "Accept:application/json"
http://localhost:8888/demo-rest-jersey-
spring/podcasts/1

{
 "id": 1,
 "title": "- The Naked Scientists Podcast -
Stripping Down Science",
 "linkOnPodcastpedia":
"http://www.podcastpedia.org/podcasts/792/-The-
Naked-Scientists-Podcast-Stripping-Down-Science",
 "feed": "feed_placeholder",
 "description": "The Scientists flagship science
show brings you a lighthearted look at the latest
scientific breakthroughs, interviews with the world
top scientists, answers to your science questions and
science experiments to try at home.",
 "insertionDate": "2014-10-29T10:46:02.00+0100"
}

25.2 POST

REQUEST RESPONSE

curl -i -X POST -H "Content-Type:application/json"
http://localhost:8888/demo-rest-jersey-
spring/podcasts/ -d '{"title":"- The Scientists
Podcast - Stripping Down
Science","Podcastpedia":"http://www.podcastpedia.o
rg/podcasts/792/-The-Scientists-Podcast-Stripping-
Down-
Science","feed":"feed_placeholder","description":"
The Scientists flagship science show brings you a
lighthearted look at the latest scientific
breakthroughs, interviews with the world top
scientists, answers to your science questions and
science experiments to try at home."}'

HTTP/1.1 201 Created
Location: http://localhost:8888/demo-rest-jersey-
spring/podcasts/2
Content-Type: text/html
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT
Access-Control-Allow-Headers: X-Requested-With,
Content-Type, X-Codingpedia
Vary: Accept-Encoding
Content-Length: 60
Server: Jetty(9.0.7.v20131107)

25.3 PUT

REQUEST RESPONSE

curl -i -X PUT -H "Content-Type:application/json"
http://localhost:8888/demo-rest-jersey-
spring/podcasts/2 -d '{"id":2,"title":"Quarks & Co
- zum
Mitnehmen","linkOnPodcastpedia":"http://www.podcas
tpedia.org/quarks","feed":"http://podcast.wdr.de/q
uarks.xml","description":"Quarks & Co: Das
Wissenschaftsmagazin"}'

HTTP/1.1 201 Created
Location: http://localhost:8888/demo-rest-jersey-
spring/podcasts/2
Content-Type: text/html
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE, PUT
Access-Control-Allow-Headers: X-Requested-With,
Content-Type, X-Codingpedia
Vary: Accept-Encoding
Content-Length: 60
Server: Jetty(9.0.7.v20131107)

An Overview of the HTTP Protocol as covered in RFCs

20

25.4 DELETE

REQUEST RESPONSE

curl -i -X DELETE http://localhost:8888/demo-rest-
jersey-spring/podcasts/

HTTP/1.1 204 No Content
Date: Tue, 25 Nov 2014 14:10:17 GMT
Server: Jetty(9.0.7.v20131107)
Content-Type: text/html
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, DELETE,
PUT
Access-Control-Allow-Headers: X-Requested-With,
Content-Type, X-Codingpedia
Vary: Accept-Encoding
Via: 1.1 vldn680:8888
Content-Length: 0

26. WebSocket
WebSocket is a computer communications protocol, providing full-duplex communication channels over a

single TCP connection. The WebSocket protocol was standardized by the IETF as RFC 6455 in 2011, and the

WebSocket API in Web IDL is being standardized by the W3C. WebSocket is a different TCP protocol from

HTTP.

27. Protocol handshake
To establish a WebSocket connection, the client sends a WebSocket handshake request, for which the

server returns a WebSocket handshake response, as shown in the example below.

Client request (just like in HTTP, each line ends with \r\n and there must be an extra blank line at the

end)

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13
Origin: http://example.com

An Overview of the HTTP Protocol as covered in RFCs 21

Server response

28. HTTP Long Polling
Web app developers can implement a technique called HTTP long polling, where the client polls the server

requesting new information. The server holds the request open until new data is available. Once available,

the server responds and sends the new information. When the client receives the new information, it

immediately sends another request, and the operation is repeated. This effectively emulates a server push

feature.

29. Web DAV
Web Distributed Authoring and Versioning (WebDAV) is an extension of the Hypertext Transfer

Protocol (HTTP) that allows clients to perform remote Web content authoring operations.

HTTP/1.1 still essentially a read-only protocol, as deployed

 Web Distributed Authoring and Versioning – HTTP extension

 The most recent version from 1999 – RFC2518

Extra methods:

 PROPFIND – retrieve resource metadata

 PROPPATCH – change/delete resource metadata

 MKCOL – create a collection (directory)

 COPY – copy resource

 MOVE – move the resource

 LOCK/UNLOCK – lock/release resource (so that others cannot change it)

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: HSmrc0sM1YUkAGmm50PpG2HaGWK=
Sec-WebSocket-Protocol: chat

An Overview of the HTTP Protocol as covered in RFCs

22

30. JWT (JSON Web Token) – SSO
JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and self-contained way for

securely transmitting information between parties as a JSON object. This information can be verified and

trusted because it is digitally signed. JWTs can be signed using a secret (with the HMAC algorithm) or a

public/private key pair using RSA.

JSON Web Tokens consist of three parts separated by dots (.), which includes Header, Payload, and

Signature. Therefore, a JWT typically looks like the following. xxxxx.yyyyy.zzzzz

31. JWT (JSON Web Token)
 Header

The header typically consists of two parts: the type of the token, which is JWT, and the hashing

algorithm being used, such as HMAC SHA256 or RSA.

For example:

 Payload

The second part of the token is the payload, which contains the claims. Claims are statements about

an entity (typically, the user) and additional metadata. There are three types of claims: registered,

public, and private claims.

{
 “alg”: “HS256”,
 “typ”: “JWT”
}

{
 “sub”: “1234567890”,
 “name”: “John Doe”,
 “admin”: true
}

An Overview of the HTTP Protocol as covered in RFCs 23

 Signature
To create the signature part you have to take the encoded header, the encoded payload, a secret,

the algorithm specified in the header, and sign that. The signature is used to verify that the sender

of the JWT and to ensure that the message was not changed along the way.

 Final Output
By putting all together, the final output shows as follows:

HMACSHA256(
 base64UrlEncode(header) + “.” +
 base64UrlEncode(payload),
 secret)

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4
gRG9lIiwiaXNTb2NpYWwiOnRydWV9.
4pcPyMD09olPSyXnrXCjTwXyr4BsezdI1AVTmud2fU4

