(nspiriSYS

Solutions Limited

Developing SSD-Object
Detection Models for Android
Using TensorFlow

Arun Mani Sam, R&D Software Engineer

Abstract

Mobile operating environments like smartphones can benefit from on-device inference for machine
learning tasks. It is common for mobile devices to use machine learning models hosted on the cloud. This
approach creates latency and service availability problems, in addition to cloud service costs. With
Tensorflow Lite, it becomes possible to do such inference tasks on the mobile device itself. Model training
is done on high performance computing systems and the model is then converted and imported to run
on Tensorflow Lite installed on the mobile.

This work demonstrates a method to train convolutional neural network (CNN) based multiclass object
detection classifiers and then import the model to an Android device. In this study, TensorFlow Lite is

®
@lspiriSYS Developing SSD-Object Detection Models for Android Using TensorFlow

Solutions Limited

used to process images of cars and identify its parts on an Android mobile phone. This technique can be
applied to a camera video stream in real-time, providing a kind of augmented reality (AR) experience.

EXPERIENCE -

Developing SSD-Object Detection Models for Android Using TensorFlow

(in'spiriSYs

Contents
INEFOTUCTION ...ttt e bt b et s ae e et e bt e bt e sheesat e sane et e e b e e beeemeeemteeneeentees 3
Architecture Overview of TENSOrFIOW Lite.............cooiiiiiiiiiiiiieeeee e 3
GENEIIC ProCess FIOWoo ittt sttt e st e s bt e e s bt e e ssbeesabeesaneeesabeeenns 4
Getting Started with TensorFIow & TensorFIOW Lite............ccccovviiiiiiiiiiii e 4
CompPonNents REQUITEooiiiiiiii e e e e st e e e e et e e e esataeeesaataeeesansseeesansseeesannreeenan 4
Train SDD MODIIENEE VL.........ooiiiiiiiiiee ettt et e e b e st st st e e e b e sbeesbeesanesnneeas 4
1. Installing TeNSOIFIOW-GPU L.5...........ooiiiiiiiieeeee ettt e e e re e e e s are e e e ebte e e s e nataeeeennteeeeenres 5
2. Setting Up TenSOrFIOW Dir@CtOrycooiiiiiiiiiiiiie et ceiee ettt e et e e e e s e ebee e e s sbee e s e anes 5
3. Setting Up the Anaconda Virtual ENVironmentccccccvviiiiiiiii e 6
4. Gathering and Labeling IMaAges................ooiiiiii ittt e e e e e aaae e e 7
5.Generating TraiNiNg Data............oooiiiiiiiiie e e e e e e e e e e e e e e e e s snarereneeeeeeanas 8
6. Creating Label Map and Configuring Training.............cccoe i 9
7. RUNNING the TraiNiNgcooiiiiiii i e e e et e e et e e e e raba e e e e saeaeeessasaeeesannaeeeens 11
8. Exporting The INference Graph ... e s sbee e e 11
Bazel INStallation (LINUX)ooo ettt e et e e e et e e e et e e e e e ar e e e ssanraeeeenssaeeesnraeeann 12
Build in Android Studio with TensorFlow Lite AAR from JCentercccoceriiriiiieinieneenieneeene 13
Deploying the model in ANAroid...............ooooiiiiiiiii e e e 13
RUNNING the MOMEL...........ooiiie e e e ee e s e e e e s be e e e s ata e e e s abeeeeennreeas 14
(0] JT=Tot g 0 T3 = Tota [o T3 1Y o I U P UPR 17
(0o T4] o1 LIV e o TTo I T 2R 18
LTS 1| IR o T T o] J SRRt 18
=T 0 o] LT 0 TV« 1 PP 19
Advantages and APPLICAtIONSooiiiiiiiii e e s ae e e e anees 19
CONCIUSION ...t b e bt s bt s at et e e bt e bt e s bt e sheesabesabe e bt e be e bt e sbeesaeeeabeebeenbeenbeens 19
REFEIENCESottt b e bt e s bt e s a ettt et e e beesheesheesabesabe e beesbeesaeesubeenbeebeenbeens 19

EXPERIENCE
pOSSIBILI TIES a EHE holdings group company

®
@lspiriSYS Developing SSD-Object Detection Models for Android Using TensorFlow

Solutions Limited

Introduction

Tensorflow Lite, the next evolution of TensorFlow Mobile promises better performance to
leverage hardware acceleration on supported devices. It also has few dependencies, resulting in smaller
binaries than its predecessor. TensorFlow Lite is TensorFlow’s lightweight solution for mobile and
embedded devices. It enables on-device machine learning inference with low latency and a small binary
size. TensorFlow Lite supports hardware acceleration with the Android Neural Networks API.

Architecture Overview of TensorFlow Lite

TensorFlow Lite supports both Android and iOS platforms. The initial step involves conversion of a trained
TensorFlow model to TensorFlow Lite file format (.tflite) using the TensorFlow Lite Converter. This
converted model file is used in the application.

Following are the important components for deploying the model as shown in the architecture diagram:

1. Java API: A wrapper around the C++ API (for Android).

2. C++ APIL: The C++ APl is responsible for loading the model file and invoking the interpreter for
further processing and execution. The same library is used for Android and iOS.

3. Interpreter: Interpreter executes the model using the defined kernels. The interpreter supports
selective kernel loading and developers can also define their own custom kernels that can be used
to perform the execution.

4. On few Android devices, the Interpreter uses the Android Neural Networks API for hardware
acceleration or default to using a CPU.

Architecture

EXPERIENCE
POSSIBILITIES

! holdings group company

S piriSY§

Solutions Limited

Generic Process Flow

Mabile App

-
.

7

g

z

3

1

I

I

i

I

I

|

i

i

I

1 v
I

I

|

I

1 x
I ;o
I

i

|

i

i

|

i

|

CPU
fallback

Android NN API '
Androld NNHAL ~ = il = — = — == {i = = = — —— _'—--..

- -
Android NN HAL IEE

Vendor NN DSP
driver
: Digital Signal Specialized
Processor Processor

e & TENSC
Images

Getting Started with TensorFlow & TensorFlow Lite

Components Required
The components required for getting started with TensorFlow are as follows:

X Android Studio IDE

Bazel (Linux OS)
Anaconda

GPU

Labellmg Labelling Tool
Image Augmentation Tool

XX XXX

Train SDD MobileNet v1

Transfer learning is a machine learning method, where a model developed for a task is reused as the
starting point for a model on a second task.

A pre-trained model is used for transfer learning to learn new objects. The benefit of transfer learning is
that training can be much quicker and the required data is much less. In this example, the SSD MobileNet
pre-trained model (on COCO) is used to train labeled car parts, like front and back doors, bumper,
windshield, left and right headlights, grille, and so on. This training is done using vanilla TensorFlow on a
machine with a GPU. The model is then exported to Android running TensorFlow Lite.

EXPERIENCE
POSSIBILITIES

a EHE holdings group company

®
@lspiriSYS Developing SSD-Object Detection Models for Android Using TensorFlow

Solutions Limited

1. Installing TensorFlow-GPU 1.5

X Type the following command in anaconda prompt to install Tensorflow GPU.
C:\Users\Tensorflow> pip install tensorflow-gpu

2. Setting Up TensorFlow Directory

The TensorFlow Object Detection API requires a specific directory structure as in its GitHub repository. It
also requires several additional Python packages specific to the environmental variables (PATH and
PYTHONPATH variables) and few commands to run or train an object detection model.

Following are the steps to set up TensorFlow Directory:

1. Create a folder in C: drive with name tensorflowl. This working directory contains the full
TensorFlow object detection framework including training images, training data, trained
classifier, and configuration files needed for the object detection classifier.

2. Click Clone or Download button for downloading the full TensorFlow object detection repository
located at https://github.com/tensorflow/models

3. Extract the downloaded file models-master folder into the created local directory
C:\tensorflowl. Rename models-master folder to models.

4. Click Clone or Download button to download the SSD_MOBILENET_V1_COCO model from
TensorFlow's model zoo and extract it in the \object_detection folder, which is used for entire
tutorial.

https://github.com/tensorflow/models/blob/master/research/object detection/g3doc/detectio
n_model zoo.md

\object_detection folder appears as shown in the image below:

This repository contains the images, annotation data, .csv files, and TFRecords needed to train a
car parts detector. This folder also contains Python scripts that are used to generate the training
data. It has scripts to test out the object detection classifier on images, videos, or a webcam feed.

EXPERIENCE -

Developing SSD-Object Detection Models for Android Using TensorFlow

(in'spiriSYs

3. Setting Up the Anaconda Virtual Environment

EXPERIENCE
POSSIBILITIES

Following are the steps required to set up Anaconda virtual environment:

1.

Search for the Anaconda Prompt utility from the Start menu in Windows, right-click on it, and
click Run as Administrator

Create a new virtual environment called tensorflowl by typing the following command in the
command terminal
C:\> conda create -n tensorflowl pip python=3.5

Activate the environment by typing the following command
C:\> activate tensorflowl

Install tensorflow-gpu in this environment by typing the following command:
(tensorflowl) C:\> pip install --ignore-installed --upgrade tensorflow-
gpu

Install the other necessary packages by typing the following commands:
(tensorflowl) C:\> conda install -c anaconda protobuf

(tensorflowl) C:\> pip install pillow
(tensorflowl) C:\> pip install 1xml
(tensorflowl) C:\> pip install Cython
(tensorflowl) C:\> pip install jupyter
(tensorflowl) C:\> pip install matplotlib
(tensorflowl) C:\> pip install pandas

C

(tensorflowl) C:\> pip install opencv-python

The python packages pandas and opencv are not required by TensorFlow, but they are used in
the Python scripts to generate TFRecords for working with images, videos, and webcam feeds.

Configure PYTHONPATH environment variable by typing the following commands
(tensorflowl) C:\> set PYTHONPATH=C:\tensorflowl\models;
C:\tensorflowl\models\research; C:\tensorflowl\models\research\slim

. Compile Protobufs and run setup.py

Change directories In the Anaconda Command Prompt to the \models\research directory, copy
and paste the following command into the command line and press Enter:

protoc --python_out=. .\object_detection\protos\anchor_generator.proto
.\object_detection\protos\argmax_matcher.proto
.\object_detection\protos\bipartite_matcher.proto
.\object_detection\protos\box_coder.proto
.\object_detection\protos\box_predictor.proto
.\object_detection\protos\eval.proto
.\object_detection\protos\faster_rcnn.proto
.\object_detection\protos\faster_rcnn_box_coder.proto
.\object_detection\protos\grid_anchor_generator.proto
.\object_detection\protos\hyperparams.proto
.\object_detection\protos\image_resizer.proto
.\object_detection\protos\input_reader.proto
.\object_detection\protos\losses.proto

a EHE holdings group company

®
@SpiriSYS Developing SSD-Object Detection Models for Android Using TensorFlow

Solutions Limited

.\object_detection\protos\matcher.proto
.\object_detection\protos\mean_stddev_box_coder.proto
.\object_detection\protos\model.proto
.\object_detection\protos\optimizer.proto
.\object_detection\protos\pipeline.proto
.\object_detection\protos\post_processing.proto
.\object_detection\protos\preprocessor.proto
.\object_detection\protos\region_similarity_calculator.proto
.\object_detection\protos\square_box_coder.proto
.\object_detection\protos\ssd.proto
.\object_detection\protos\ssd_anchor_generator.proto
.\object_detection\protos\string_int_label_map.proto
.\object_detection\protos\train.proto
.\object_detection\protos\keypoint_box_coder.proto
.\object_detection\protos\multiscale_anchor_generator.proto
.\object_detection\protos\graph_rewriter.proto

This creates a name_pb2.py file from every name.proto file in the \object_detection\protos
folder.

Run the following commands from the C:\tensorflowl\models\research directory:
(tensorflowl)C:\tensorflowl\models\research> python setup.py build
(tensorflowl) C:\tensorflowl\models\research> python setup.py install

4. Gathering and Labeling Images

TensorFlow requires hundreds of images of an object to train a good detection classifier. To train a robust
classifier, the training images must have random objects in the image along with the desired objects,
variety of backgrounds, and lighting conditions. The images may include the partially obscured images,
overlapped images, or only halfway in the picture. Following are the steps to gather and label pictures:

1.

EXPERIENCE
POSSIBILITIES

Take pictures of the objects from mobile phone or download images of the objects from Google
Image Search. Recommended number of images per class = 300 to 500

Ensure the images are not too large. The larger the images are, the longer it takes time to train
the classifier. The resizer.py script in this repository is used to reduce the size of the images.

Move 20% of images to the \object_detection\images\test directory, and 80% of images to the
\object_detection\images\train directory.

Ensure there are variety of pictures in both the \test and \train directories.

Labellmg is a great tool for labeling images, and its GitHub page has very clear instructions on
how to install and use it.

Generate augmented images, use github code below or any other augmentation tools.
https://github.com/codebox/image augmentor

https://github.com/tzutalin/labellmg

https://www.dropbox.com/s/tq7zfrcwl44vxan/windows v1.6.0.zip?dl=1

holdings group company

. ° e o S
Developing SSD-Object Detection Models for Android Using TensorFlow @SplrlSYS

Solutions Limited

7. Download and install Labellmg, point it to your \images\train directory, and then draw a box
around each object in each image. In this case we use car parts as labels for SSD. Repeat the
process for all the images in the \images\test directory.

8. Labellmg saves an .xml file containing the label data for each image. These .xml files are used to
generate TFRecords, which are one of the inputs to the TensorFlow trainer. Each labeled and
saved image consists of an .xml file in the \test and \train directories.

9. Check if the size of each bounding box is correct by running sizeChecker.py
(tensorflowl) C:\tensorflowl\models\research\object_detection> python
sizeChecker.py --move

Sample Snapshot is displayed as shown below.

© shaiima

g
Ef,jf,g\'
g

él‘

i

H

fmia

5. Generating Training Data
Following are the steps to generate training data:

1. With the images labeled, generate the TFRecords that serve as input data to the TensorFlow
training model. The image .xml data is used to create .csv files containing all the data for the train
and test images.

2. From the \object_detection folder, type the following command in the Anaconda command
prompt:
(tensorflowl) C:\tensorflowl\models\research\object_detection> python
xml_to_csv.py

3. This creates a train_labels.csv and test_labels.csv file in the \object_detection\images folder.
4. Open the generate_tfrecord.py file in a text editor. Replace the label map starting at line 31 with

your own label map, where each object is assigned an ID number. This same number assignment
is used, when configuring the labelmap.pbtxt

EXPERIENCE
pOSSIBILI TIES a EHE holdings group company

®
@lspiriSYS Developing SSD-Object Detection Models for Android Using TensorFlow

Solutions Limited

= CodeWriter Ed s
25 flags = tf.app.flags

24 flags.
25 flags.
26 flags.DEFINE_string(’
27 FLAGS = flags.FLAGS

', 'Path to the Csv

*, 'Path to output TF

‘Front_Bumper':
'Rear_Bumper':
20 elif row_label == 'Dickey’:
‘Right_QP':
'Left_Front_boor':
‘Left_Fender':
‘Left_oP":
ar_Bumper' :
'Right_Rear_Door':
'Right_Front_poor':

‘Right_Fender':

5. Generate the TFRecord files by entering these commands from the \object_detection folder:
python generate_tfrecord.py --csv_input=images\train_labels.csv --
image_dir=images\train --output_path=train.record

python generate_tfrecord.py --csv_input=images\test_labels.csv --

image_dir=images\test --output_path=test.record

6. Creating Label Map and Configuring Training

Following are the steps to create label map and configure training:

1. Create a label map and edit the training configuration file. The label map interprets the trainer
about each object by defining a mapping of class names to class ID numbers.

2. Use a text editor to create a new file and save it as labelmap.pbtxt in the
C:\tensorflowl\models\research\object_detection\training folder.

A Note: Ensure the file type is .pbtxt, not .txt

3. Inthe text editor, copy/type in the label map in the format below:
item {
id: 1
name: 'Bonnet'’
¥
item {
id: 2
name: 'Grille’
}
item {
id: 3
name: 'Front_Bumper'

}

item {

EXPERIENCE -

Developing SSD-Object Detection Models for Android Using TensorFlow

S piriSY8®

Solutions Limited

@

id: 4
name: 'Rear_Bumper'
}
item {
id: 5
name: 'Right_QP’
¥
item {
id: 6
name: 'Left_Front_Door'
¥
Item{
Id:7
name:’ Left Fender’}

The label map ID numbers remains the same as what is defined in the generate_tfrecord.py file.

Finally, the object detection training pipeline is configured. It defines which model and what
parameters are used for training. This is the last step before running training.

4. Navigate to C:\tensorflowl\models\research\object_detection\samples\configs and copy the
ssd_mobilenet_v1_coco.config file into the \object_detection\training directory. Then, open
the .config file with a text editor. Change the number of classes and examples. Add the file paths
to the training data.

5. Make the following changes to the ssd_mobilenet_v1_coco.config file and save it.

Note: Enter the paths with single forward slashes (NOT BACKSLASHES) otherwise,
& TensorFlow prompts a file path error, when trying to train the model. Also, the paths
must be provided in double quotation marks (“) and not single quotation marks ().

X Line 9. Change num_classes to the number of different objects you want the classifier to
detect. For the above Car parts Detector, it would be num_classes: 30.
X Line 110. Change fine_tune_checkpoint to:

o fine_tune_checkpoint
"C:/tensorflowl/models/research/object_detection/
ssd_mobilenet_vl_coco_2017_11_17/model.ckpt"

K Lines 126 and 128. In the train_input_reader section, change input_path and
label_map_path to:

o input_path :
"C:/tensorflowl/models/research/object_detection/train.record"

o label_map_path:
"C:/tensorflowl/models/research/object_detection/training/labe
Imap.pbtxt"

X Line 132. Change num_examples to the number of images in the \images\test directory.
X Lines 140 and 142. In the eval_input_reader section, change input_path and
label_map_path to:

o input_path:
"C:/tensorflowl/models/research/object_detection/test.record”

EXPERIENCE
pOSSIBILI TIES a EHE holdings group company

®
@lspiriSYS Developing SSD-Object Detection Models for Android Using TensorFlow

Solutions Limited

o label_map_path:
"C:/tensorflowl/models/research/object_detection/training/labe
Imap.pbtxt"

Change the batchsize to 1.

7. Running the Training

Following are the steps to run the training:

1. After setting up, initialize the training for TensorFlow. The initialization can take up to 30 seconds
before the actual training begins.
from Research/object_detection folder run
python train.py --logtostderr --train_dir=training/ --
pipeline_config_path=training/ssd_mobilenet_v1_coco.config

2. Each step of training reports the loss. It starts high and gets low as training progresses. Allow your
model to train until the loss consistently drops below 0.05, which takes around 40,000 steps, or
about 2 hours (depends on power of CPU/GPU).

3. Progress of the training job is viewed by using TensorBoard. Open a new instance of Anaconda
Prompt, activate the tensorflowl virtual environment, change to the
C:\tensorflowl\models\research\object_detection directory, and type the following command:
(tensorflowl)
C:\tensorflowl\models\research\object_detection>tensorboard --
logdir=training

This creates a webpage on your local machine at YourPCName:6006, which is viewed through a
web browser. The TensorBoard page provides information and graphs that show about the
progress of the training. One important graph is the Loss graph, which shows the overall loss of
the classifier over time.

Loss/BoxClassifierLoss/classification_loss/mul_1
0.250 1
0.200

=
oy
[%.4)
(=]

| A .!ﬂ'
0.0500 [WY ’%r\‘__.-;f.‘xwav.mms-\:x.w%

0.000 20.00k 40.00k 60.00k

8. Exporting The Inference Graph

Following are the steps to export the inference graph:

1. The last step is to generate the frozen inference graph (.pb file). From the \object_detection
folder, type the following command, where “XXXX” in “model.ckpt-XXXX” must be replaced with
the highest-numbered .ckpt file in the training folder:

From research/object_detection folder run

EXPERIENCE -

Developing SSD-Object Detection Models for Android Using TensorFlow

®

° e o
(inspiriSYs
python export_inference_graph.py --input_type image_tensor --
pipeline_config_path training/faster_rcnn_inception_v2_pets.config --
trained_checkpoint_prefix training/model.ckpt-XXXX --output_directory
inference_graph

2. This creates a frozen_inference_graph.pb file in the \object_detection\inference_graph folder.
The .pb file contains the object detection classifier.

Bazel Installation (LINUX)

Bazel is an open-source build and test tool similar to Make, Maven, and Gradle. It uses a human-readable,
high-level build language. Bazel supports projects in multiple languages and builds outputs for multiple
platforms. Bazel supports large codebases across multiple repositories, and large numbers of users.
Following are the steps for installing Bazel:

1. Download the Bazel binary installer named bazel-<version>-installer-linux-x86_64.sh from the
Bazel releases page on GitHub.
sudo apt-get install pkg-config zip g++ zliblg-dev unzip python

2. Runthe Installer.
chmod +x bazel-<version>-installer-linux-x86_64.sh
./bazel-<version>-installer-1linux-x86_64.sh -user
sudo apt-get update && sudo apt-get install bazel
sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update && sudo apt-get install oracle-java8-installer

3. Setup your Environment
export PATH="$PATH:$HOME/bin"

4. |Install JIDK
sudo apt-get install openjdk-8-jdk

5. Edit WORKSPACE File. In the root of the TensorFlow repository, update the WORKSPACE file
with the api_level and location of the SDK and NDK.
If you installed it with Android Studio, the SDK path can be found in the SDK manager. The
default NDK path is:{SDK path}/ndk-bundle.

For example:

android_sdk_repository (
name = "androidsdk",
api_level = 23,
build_tools_version = "23.0.2",
path = "/home/xxxx/android-sdk-1linux/",

)

android_ndk_repository(
name = "androidndk",
path = "/home/xxxx/android-ndk-ri1ee/",
api_level = 19,

)

Reference: https://docs.bazel.build/versions/master/install-ubuntu.html

EXPERIENCE
POSSIBILITIES

a EHE holdings group company

®
@lspiriSYS Developing SSD-Object Detection Models for Android Using TensorFlow

Solutions Limited

Build in Android Studio with TensorFlow Lite AAR from JCenter
Use Android Studio to make changes in the project code and compile the demo app following the
instructions below:

1. Install the latest version of Android Studio.

2. Ensure the Android SDK version is greater than 26 and NDK version is greater than 14 (in the
Android Studio settings).

w

Import the tensorflow/lite/java/demo directory as a new Android Studio project.

E

Install all the Gradle extensions it requests.
Build and run the demo app.

6. Load Model to the assets directory: tensorflow/lite/java/demo/app/src/main/assets/.
Some additional details are available on the TF Lite Android App page

Deploying the model in Android
Following are the steps to deploy the model in Android:

1. Tensorflow Lite has a limited support of operations. The script “export_tflite_ssd_graph.py”
generates a frozen graph that works on TFLite.

2. Convert this graph to Tensorflow Lite format using TOCO (TensorFlow Lite Optimizing
Converter). The detect.tflitegraph is the one, which is used in the mobile app.

Export graph for tensorflow lite

python
/tensorflow_models/research/object_detection/export_tflite_ssd_graph.py
\

--pipeline_config_path CONFIG_FILE \

--trained_checkpoint_prefix CHECKPOINT_PATH \

--output_directory OUTPUT_DIR \

Optimize graph for tensorflow lite using TOCO

cd /tensorflow | \

bazel run -c opt tensorflow/lite/toco:toco -- \
--input_file=$0OUTPUT_DIR/tflite_graph.pb \
--output_file=$OUTPUT_DIR/carparts.tflite \

--input_shapes=1,300,300,3 \
--input_arrays=normalized_input_image_tensor \
output_arrays='TFLite_Detection_PostProcess’','TFLite_Detection_PostProc
ess:1','TFLite_Detection_PostProcess:2', 'TFLite_Detection_PostProcess:3
A\

--inference_type=FLOAT \

--mean_values=128 \

--std_values=128 \

--change_concat_input_ranges=false \

EXPERIENCE -

Developing SSD-Object Detection Models for Android Using TensorFlow

S piriSY8®

Solutions Limited

a

--allow_custom_ops

Loading the model

The FlatBufferModel class encapsulates a model and is built in a couple of slightly different ways
depending on where the model is stored:

class FlatBufferModel {
// Build a model based on a file. Return a nullptr in case of
failure.
static std::unique_ptr<FlatBufferModel> BuildFromFile(
const char* filename,
ErrorReporter* error_reporter);

Note: If TensorFlow Lite detects the presence of Android’s NNAPI, it automatically tries
& to use shared memory to store the FlatBufferModel

private static final int TF_OD_API_INPUT_SIZE = 300;

private static final String TF_OD_API_MODEL_FILE = "carparts.tflite";
private static final String TF_OD_API_LABELS_FILE =
"file:///android_asset/car_parts_label.txt";

detector =

TFLiteObjectDetectionAPIModel.create(
getAssets(),
TF_OD_API_MODEL_FILE,
TF_OD_API_LABELS_FILE,
TF_OD_API_INPUT_SIZE,
TF_OD_API_IS_QUANTIZED);

cropSize = TF_OD_API_INPUT_SIZE;

Running the model
Following are the steps to run a model:

vk wnN e

Build an Interpreter based on an existing FlatBufferModel

Optionally resize input tensors, if the predefined sizes are not desired.
Set input tensor values

Invoke inference

Read output tensor values

Note: Tensors are represented by integers, in order to avoid string comparisons (and
any fixed dependency on string libraries). An interpreter must not be accessed from
concurrent threads. Memory allocation for input and output tensors must be triggered
by calling AllocateTensors() right after resizing tensors.

class Interpreter {

EXPERIENCE
POSSIBILITIES

a EHE holdings group company

®
@SpiriSYS Developing SSD-Object Detection Models for Android Using TensorFlow

Solutions Limited

Interpreter(ErrorReporter* error_reporter);
// Read only access to list of inputs.
const std::vector<int>& inputs() const;
// Read only access to list of outputs.
const std::vector<int>& outputs() const;
// Change the dimensionality of a given tensor.
TfLiteStatus ResizeInputTensor(int tensor_index,
const std::vector<int>& dims);
// Returns status of success or failure.
TfLiteStatus AllocateTensors();

// Return a pointer into the data of a given input tensor.
template <class T>
T* typed_input_tensor(int index) {

return typed_tensor<T>(inputs_[index]);

}

// Return a pointer into the data of a given output tensor.
template <class T>
T* typed_output_tensor(int index) {
return typed_tensor<T>(outputs_[index]);
}
// Execute the model, populating output tensors.
TfLiteStatus Invoke();
}s
protected void processImage() {
++timestamp;
final long currTimestamp = timestamp;
byte[] originalLuminance = getLuminance();
tracker.onFrame(
previewWidth,
previewHeight,
getLuminanceStride(),
sensorOrientation,
originalLuminance,
timestamp);
trackingOverlay.postInvalidate();
if (computingDetection) {
readyForNextImage();
return;
}
computingDetection = true;
LOGGER.i("Preparing image
thread.");

+ currTimestamp + " for detection in bg

rgbFrameBitmap.setPixels(getRgbBytes(), @, previewWidth, @, o,
previewWidth, previewHeight);
if (luminanceCopy == null) {
luminanceCopy = new byte[originallLuminance.length];

}

EXPERIENCE -

Developing SSD-Object Detection Models for Android Using TensorFlow

(in'spiriSYs

System.arraycopy(originalLuminance, @, luminanceCopy, O,
originalLuminance.length);

readyForNextImage();

final Canvas canvas = new Canvas(croppedBitmap);

canvas.drawBitmap(rgbFrameBitmap, frameToCropTransform, null);

// For examining the actual TF input.

if (SAVE_PREVIEW_BITMAP) {

ImageUtils.saveBitmap(croppedBitmap);

}
runInBackground(
new Runnable() {
@0verride

public void run() {
LOGGER.i("Running detection on image " + currTimestamp);
final long startTime = SystemClock.uptimeMillis();
final List<Classifier.Recognition> results =
detector.recognizeImage(croppedBitmap);
lastProcessingTimeMs = SystemClock.uptimeMillis() - startTime;
cropCopyBitmap = Bitmap.createBitmap(croppedBitmap);
final Canvas canvas = new Canvas(cropCopyBitmap);
final Paint paint = new Paint();
paint.setColor(Color.RED);
paint.setStyle(Style.STROKE);
paint.setStrokeWidth(2.0f);
float minimumConfidence = MINIMUM_CONFIDENCE_TF_OD_API;
switch (MODE) {
case TF_OD_API:
minimumConfidence = MINIMUM_CONFIDENCE_TF_OD_API;
break;

}

final List<Classifier.Recognition> mappedRecognitions =
new LinkedList<Classifier.Recognition>();
for (final Classifier.Recognition result : results) {
final RectF location = result.getLocation();
if (location != null && result.getConfidence() »>=
minimumConfidence) {
canvas.drawRect(location, paint);

cropToFrameTransform.mapRect(location);
result.setLocation(location);
mappedRecognitions.add(result);

}
}
tracker.trackResults(mappedRecognitions, luminanceCopy,
currTimestamp);
trackingOverlay.postInvalidate();
requestRender();
computingDetection = false;
}
1

EXPERIENCE
POSSIBILITIES

a EHE holdings group company

®
@SpiriSYS Developing SSD-Object Detection Models for Android Using TensorFlow

Solutions Limited

Object Detection API

TensorFlow Lite is designed for fast inference on small devices, which provides the APIs to avoid
unnecessary copies at the expense of convenience.

Following are the sample code snippets for object detection API:

final TFLiteObjectDetectionAPIModel d = new
TFLiteObjectDetectionAPIModel();

InputStream labelsInput = null;
String actualFilename = labelFilename.split("file:///android_asset/")[1];
labelsInput = assetManager.open(actualFilename);
BufferedReader br = null;
br = new BufferedReader(new InputStreamReader(labelsInput));
String line;
while ((line = br.readLine()) != null) {
LOGGER.w(1line);
d.labels.add(1line);
}

br.close();
d.inputSize = inputSize;

try {
d.tfLite = new Interpreter(loadModelFile(assetManager, modelFilename));

} catch (Exception e) {
throw new RuntimeException(e);

}

d.isModelQuantized = isQuantized;
// Pre-allocate buffers.

int numBytesPerChannel;

if (isQuantized) {

numBytesPerChannel = 1; // Quantized
} else {
numBytesPerChannel = 4; // Floating point

Q -

.imgData = ByteBuffer.allocateDirect(1l * d.inputSize * d.inputSize * 3 *
numBytesPerChannel);

d.imgData.order(ByteOrder.nativeOrder());

.intValues = new int[d.inputSize * d.inputSize];

Q

.tfLite.setNumThreads (NUM_THREADS);
.outputLocations = new float[1][NUM_DETECTIONS][4];
.outputClasses = new float[1][NUM_DETECTIONS];
.outputScores = new float[1][NUM_DETECTIONS];
.numDetections = new float[1];

return d;

Qaaaaa

EXPERIENCE -

Developing SSD-Object Detection Models for Android Using TensorFlow

(in'spiriSYs

}

Trace.beginSection("run");
tfLite.runForMultipleInputsOutputs(inputArray, outputMap);
Trace.endSection();

final ArraylList<Recognition> recognitions = new
ArrayList<>(NUM_DETECTIONS);
for (int i = @; i < NUM_DETECTIONS; ++i) {
final RectF detection =
new RectF(

outputLocations[@][i][1] * inputSize,
outputLocations[@][i][@] * inputSize,
outputLocations[@][i][3] * inputSize,
outputLocations[@][i][2] * inputSize);

int labelOffset = 1;

recognitions.add(

new Recognition(

"oy i,
labels.get((int) outputClasses[@][i] + labelOffset),
outputScores[0][i],
detection));

Compile Android app

1. Compile the Android app using Bazel, it uses optimized native scripts in C++ to track the objects.
android_sdk_repository (

name = "androidsdk",

api_level = 23,

build_tools_version = "23.0.2",

path = "/home/xxxx/android-sdk-linux/",
)

android_ndk_repository(
name = "androidndk",
path = "/home/xxxx/android-ndk-ri10e/",
api_level = 19,

)

2. Set path in the workspace for the PATH_TO_SDK and PATH_TO_NDK.
bazel build -c opt --cxxopt='--std=c++11'
//tensorflow/tflite/android:tflite_demo

Install the app
The following code installs the app

adb install -r -f bazel-bin/tensorflow/tflite/android/tflite_demo.apk

EXPERIENCE
pOSSIBILI TIES a EHE holdings group company

®
@SpiriSYS Developing SSD-Object Detection Models for Android Using TensorFlow

Solutions Limited

Sample Output

The following are the output images showing car image with bounding boxes over individual car parts
with their labels.

Advantages and Applications
TensorFlow Lite remains better in its usage and applications due to the following characteristics:

X TensorFlow Lite enables on-device machine learning inference with low latency. These
characteristics led TensorFlow as fast in response with reliable operations.

TensorFlow Lite occupies small binary size and remains suitable for mobile devices.

TensorFlow Lite supports hardware acceleration with the Android Neural Networks API.
TensorFlow Lite operates extensively without relying upon the internet connectivity.
TensorFlow Lite also enriches developers toward the exploration of pioneering real time
applications.

XXRXRX

TensorFlow Lite uses several techniques for achieving low latency such as:

X Optimizing the kernels for mobile apps.
X Pre-fused activations.
X Quantized kernels that allow smaller and faster models.

Conclusion

In this study, TensorFlow model is deployed on mobile devices, which addresses many challenges during
the deployment. This document fulfils the concepts detailing about the overview of TensorFlow, its
architecture, its process flow, step-by-step procedures to start, train the model, and deployment. This
document serves as a technical reference document for developers and provides an approach for
deployment of TensorFlow Lite on Android.

References

https://github.com/tensorflow/models

EXPERIENCE -

Developing SSD-Object Detection Models for Android Using TensorFlow

(inspiriSYS

https://www.tensorflow.org/lite/demo android

https://medium.com/mindorks/android-tensorflow-lite-machine-learning-example-b06ca29226b6

https://riggaroo.co.za/building-a-custom-machine-learning-model-on-android-with-tensorflow-lite/

https://blog.mindorks.com/android-tensorflow-machine-learning-example-ff0e9b2654cc

https://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-
Windows-10

https://medium.com/@rdeep/tensorflow-lite-tutorial-easy-implementation-in-android-145443ec3775

https://heartbeat.fritz.ai/intro-to-machine-learning-on-android-how-to-convert-a-custom-model-to-
tensorflow-lite-e07d2d9d50e3

https://medium.com/tensorflow/training-and-serving-a-realtime-mobile-object-detector-in-30-
minutes-with-cloud-tpus-b78971cf1193

EXPERIENCE
POSSIBILITIES

a EHE holdings group company

